The gut microbiome influences host's immunity, development, and metabolism and participates in the gut-brain axis, thus impacting the health of the host. It is a dynamic community varying between individuals and within individuals at different time points. Hence, determining the factors causing this variability may elucidate their impact on host's health. However, understanding the drivers of variation has proven difficult particularly as multiple interactions occur simultaneously in the gut microbiome. We investigated the factors shaping the gut microbiome by applying the metacommunity concept where the gut microbiome is considered as a microbial community shaped by the interactions within the community, with the host and microbial communities outside the host, this through a longitudinal study in a wild primate. Focal behavioral data were collected for 1 year in four groups of redfronted lemurs to determine individual social and feeding behaviors. In addition, regular fecal samples were collected to assess bacteria, protozoa, and helminths through marker gene analysis and to measure fecal glucocorticoid metabolite (fGCM) concentrations to investigate the impact of physiological stress on the gut microbiome. Higher consumption of leaves and elevated fGCM concentrations correlated with higher alpha diversity, which also differed among groups. The major drivers of variation in beta diversity were group membership, precipitation and fGCM concentrations. We found positive and negative associations between bacterial genera and almost all studied factors. Correlations between bacterial indicator networks and social networks indicate transmission of bacteria between interacting individuals. We detected that processes occurring inside the gut environment are shaping the gut microbiome. Host associated factors such as, HPA axis, dietary changes, and fluctuations in water availability had a greater impact than interactions within the microbial community. The interplay with microbial communities outside the host also shape the gut microbiome through the exchange of bacteria through social relationships between individuals and the acquisition of microorganisms from environmental water sources.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9744850 | PMC |
http://dx.doi.org/10.1038/s41598-022-25733-x | DOI Listing |
Ann Rheum Dis
January 2025
Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA. Electronic address:
Objectives: This study aims to elucidate the microbial signatures associated with autoimmune diseases, particularly systemic lupus erythematosus (SLE) and inflammatory bowel disease (IBD), compared with colorectal cancer (CRC), to identify unique biomarkers and shared microbial mechanisms that could inform specific treatment protocols.
Methods: We analysed metagenomic datasets from patient cohorts with six autoimmune conditions-SLE, IBD, multiple sclerosis, myasthenia gravis, Graves' disease and ankylosing spondylitis-contrasting these with CRC metagenomes to delineate disease-specific microbial profiles. The study focused on identifying predictive biomarkers from species profiles and functional genes, integrating protein-protein interaction analyses to explore effector-like proteins and their targets in key signalling pathways.
Ann Rheum Dis
January 2025
Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
The increasing prevalence of autoimmune and immune-mediated diseases (AIMDs) underscores the need to understand environmental factors that contribute to their pathogenesis, with the microbiome emerging as a key player. Despite significant advancements in understanding how the microbiome influences physiological and inflammatory responses, translating these findings into clinical practice remains challenging. This viewpoint reviews the progress and obstacles in microbiome research related to AIMDs, examining molecular techniques that enhance our understanding of microbial contributions to disease.
View Article and Find Full Text PDFClin Rev Allergy Immunol
January 2025
Department of Pediatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China.
The intestinal microbiota is a complex community of organisms present in the human gastrointestinal tract, some of which can produce short-chain fatty acids (SCFAs) through the fermentation of dietary fiber. SCFAs play a major role in mediating the intestinal microbiota's regulation of host immunity and intestinal homeostasis. Respiratory syncytial virus (RSV) can cause an imbalance between anti-inflammatory and proinflammatory responses in the host.
View Article and Find Full Text PDFRheumatology (Oxford)
January 2025
School of Management, Shanxi Medical University, Taiyuan, China.
Objectives: Rheumatoid arthritis (RA) is a chronic, destructive autoimmune disorder predominantly targeting the joints, with gut microbiota dysbiosis being intricately associated with its progression. The aim of the present study was to develop of effective early diagnostic methods for early RA based on gut microbiota.
Methods: A cohort comprising 262 RA patients and 475 healthy controls (HCs) was recruited.
The gut microbiome is a complex system that directly interacts with and influences many systems in the body. This delicate balance of microbiota plays an important role in health and disease and is highly influenced by lifestyle factors and the surrounding environment. As further research emerges, understanding the full potential of the gut microbiome and the impact of using nutraceuticals to positively influence its function may open the door to greater therapeutic outcomes in the treatment and prevention of disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!