Soil carbon dynamics is strongly controlled by depth globally, with increasingly slow dynamics found at depth. The mechanistic basis remains however controversial, limiting our ability to predict carbon cycle-climate feedbacks. Here we combine radiocarbon and thermal analyses with long-term incubations in absence/presence of continuously C/C-labelled plants to show that bioenergetic constraints of decomposers consistently drive the depth-dependency of soil carbon dynamics over a range of mineral reactivity contexts. The slow dynamics of subsoil carbon is tightly related to both its low energy density and high activation energy of decomposition, leading to an unfavourable 'return-on-energy-investment' for decomposers. We also observe strong acceleration of millennia-old subsoil carbon decomposition induced by roots ('rhizosphere priming'), showing that sufficient supply of energy by roots is able to alleviate the strong energy limitation of decomposition. These findings demonstrate that subsoil carbon persistence results from its poor energy quality together with the lack of energy supply by roots due to their low density at depth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9744916 | PMC |
http://dx.doi.org/10.1038/s41467-022-34951-w | DOI Listing |
Microb Ecol
January 2025
State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
The ecological niche separation of microbial interactions in forest ecosystems is critical to maintaining ecological balance and biodiversity and has yet to be comprehensively explored in microbial ecology. This study investigated the impacts of soil properties on microbial interactions and carbon metabolism potential in forest soils across 67 sites in China. Using redundancy analysis and random forest models, we identified soil pH and dissolved organic matter (DOM) aromaticity as the primary drivers of microbial interactions, representing abiotic conditions and resource niches, respectively.
View Article and Find Full Text PDFSci Rep
January 2025
U.S. Geological Survey, Wetland and Aquatic Research Center, 700 Cajundome Boulevard, Lafayette, LA, 70506, USA.
Blue carbon refers to organic carbon sequestered by oceanic and coastal ecosystems. This stock has gained global attention as a high organic carbon repository relative to other ecosystems. Within blue carbon ecosystems, tidally influenced wetlands alone store a disproportionately higher amount of organic carbon than other blue carbon systems.
View Article and Find Full Text PDFBioresour Technol
January 2025
National&Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China. Electronic address:
The combination of hematite and biochar significantly accelerated tetracycline (TC) removal under visible light irradiation. The k of TC removal with Hem/BC-5 reached 0.103 min, 3.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
College of Environment and Resources, College of Carbon Neutral, Zhejiang A & F University, Hangzhou 311300, China.
p-Phenylenediamines (PPDs) are widely used as antioxidants in numerous rubber products to prevent or delay oxidation and corrosion. However, their derived quinones (PPD-Qs), generated through reactions with ozone, are ubiquitous in the environment and raise significant health and toxicity concerns. This review summarizes the current state of knowledge on environmental distribution and fate, human exposure, and biological toxicity of PPDs and PPD-Qs, and makes recommendations for future research directions.
View Article and Find Full Text PDFAstrobiology
January 2025
Experimental Biophysics and Space Sciences, Department of Physics, Freie Universitaet Berlin, Berlin, Germany.
The (PSS) experiment was part of the European Space Agency's mission and was conducted on the International Space Station from 2014 to 2016. The PSS experiment investigated the properties of montmorillonite clay as a protective shield against degradation of organic compounds that were exposed to elevated levels of ultraviolet (UV) radiation in space. Additionally, we examined the potential for montmorillonite to catalyze UV-induced breakdown of the amino acid alanine and its potential to trap the resulting photochemical byproducts within its interlayers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!