The progress in optogenetics largely depends on the development of light-activated proteins as new molecular tools. Using cultured hippocampal neurons, we compared the properties of two light-activated cation channels - classical channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2) and recently described channelrhodopsin isolated from the alga Platymonas subcordiformis (PsChR2). PsChR2 ensured generation of action potentials by neurons when activated by the pulsed light stimulation with the frequencies up to 40-50 Hz, while the upper limit for CrChR2 was 20-30 Hz. An important advantage of PsChR2 compared to classical channelrhodopsin CrChR2 is the blue shift of its excitation spectrum, which opens the possibility for its application in all-optical electrophysiology experiments that require the separation of the maxima of the spectra of channelrhodopsins used for the stimulation of neurons and the maxima of the excitation spectra of various red fluorescent probes. We compared the response (generation of action potentials) of neurons expressing CrChR2 and PsChR2 to light stimuli at 530 and 550 nm commonly used for the excitation of red fluorescent probes. The 530-nm light was significantly (3.7 times) less efficient in the activation of neurons expressing PsChR2 vs. CrChR2-expressing neurons. The light at 550 nm, even at the maximal used intensity, failed to stimulate neurons expressing either of the studied opsins. This indicates that the PsChR2 channelrhodopsin from the alga P. subcordiformis is a promising optogenetic tool, both in terms of its frequency characteristics and possibility of its application for neuronal stimulation with a short-wavelength (blue, 470 nm) light accompanied by simultaneous recording of various physiological processes using fluorescent probes.

Download full-text PDF

Source
http://dx.doi.org/10.1134/S0006297922110116DOI Listing

Publication Analysis

Top Keywords

fluorescent probes
12
neurons expressing
12
channelrhodopsin alga
8
alga platymonas
8
platymonas subcordiformis
8
subcordiformis promising
8
promising optogenetic
8
optogenetic tool
8
generation action
8
action potentials
8

Similar Publications

Evaluating amyloid-beta aggregation and toxicity in transgenic Caenorhabditis elegans models of Alzheimer's disease.

Methods Cell Biol

January 2025

Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Santa Maria, RS, Brazil.

Alzheimer's disease (AD) is the leading cause of dementia in the elderly, clinically characterized by memory loss, cognitive decline, and behavioral disturbances. Its pathogenesis is not fully comprehended but involves intracellular depositions of amyloid beta peptide (Aβ) and neurofibrillary tangles of hyperphosphorylated tau. Currently, pharmacological interventions solely slow the progression of symptoms.

View Article and Find Full Text PDF

Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.

View Article and Find Full Text PDF

Lab on a single microbead: An enzyme-free strategy for the sensitive detection of microRNA via efficient localized catalytic hairpin assembly.

Anal Chim Acta

February 2025

Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China; Engineering Research Center of Brain Diseases Drug Development, Universities of Shaanxi Province, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China. Electronic address:

Background: Accurate quantification of microRNA (miRNA) is of great significance because it provides opportunities for the accurate early diagnosis of a series of human diseases including cancers. Currently, complicated nucleic acid amplification technologies are always required for the highly sensitive miRNA detection. The introduction of nucleic acid signal amplification coupled with various enzymes will inevitably lead to tedious work and increase the complexity of the analysis process.

View Article and Find Full Text PDF

Mechanosynthesis of fluorescent magnetic alumina for latent fingerprint detection.

J Colloid Interface Sci

January 2025

iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.

A green approach towards the synthesis of both conventional and magnetic fluorescent powders for revealing latent fingerprints (FPs) is disclosed. The powders formulation is based on a biodegradable matrix and fluorescent dyes extracted from commercial felt-tip markers. Two classes of powders are described: one with a fluorescent component, and other with both fluorescent and magnetic components.

View Article and Find Full Text PDF

Discovery of an Enzyme-Activated Fluorogenic Probe for Profiling of Acylaminoacyl-Peptide Hydrolase.

Anal Chem

January 2025

Department of Laboratory Medicine, School of Medicine, Yangtze University, Jingzhou 434023, P.R. China.

Acylaminoacyl-peptide hydrolase (APEH), a serine peptidase that belongs to the prolyl oligopeptidase (POP) family, catalyzes removal of N-terminal acetylated amino acid residues from peptides. As a key regulator of protein N-terminal acetylation, APEH was involved in many important physiological processes while its aberrant expression was correlated with progression of various diseases such as inflammation, diabetics, Alzheimer's disease (AD), and cancers. However, while emerging attention has been attracted in APEH-related disease diagnosis and drug discovery, the mechanisms behind APEH and related disease progression are still unclear; thus, further investigating the physiological role and function of APEH is of great importance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!