A multiscale mathematical model describing the growth and development of bambara groundnut.

J Theor Biol

Department of Mathematics and Statistics, University of Reading, Whiteknights, Reading, RG6 6AX, United Kingdom; Institute of Cardiovascular and Metabolic Research, University of Reading, Whiteknights, Reading, RG6 6AA, United Kingdom. Electronic address:

Published: March 2023

A principal objective in agriculture is to maximise food production; this is particularly relevant with the added demands of an ever increasing population, coupled with the unpredictability that climate change brings. Further improvements in productivity can only be achieved with an increased understanding of plant and crop processes. In this respect, mathematical modelling of plants and crops plays an important role. In this paper we present a two-scale mathematical model of crop yield that accounts for plant growth and canopy interactions. A system of nonlinear ordinary differential equations (ODEs) is formulated to describe the growth of each individual plant, where equations are coupled via a term that describes plant competition via canopy-canopy interactions. A crop of greenhouse plants is then modelled via an agent based modelling approach in which the growth of each plant is described via our system of ODEs. The model is formulated for the African drought tolerant legume bambara groundnut (Vigna subterranea), which is currently being investigated as a food source in light of climate change and food insecurity challenges. Our model allows us to account for plant diversity and also investigate the effect of individual plant traits (e.g. plant canopy size and planting distance) on the yield of the overall crop. Informed with greenhouse data, model results show that plant positioning relative to other plants has a large impact on individual plant yield. Variation in physiological plant traits from genetic diversity and the environmental effects lead to experimentally observed variations in crop yield. These traits include plant height, plant carrying capacity, leaf accumulation rate and canopy spread. Of these traits plant height and ground cover growth rates are found to have the greatest impact on crop yield. We also consider a range of different planting arrangements (uniform grid, staggered grid, circular rings and random allocation) and find that the staggered grid leads to the greatest crop yield (6% more compared to uniform grid). Whilst formulated specifically for bambara groundnut, the generic formulation of our model means that with changes to certain parameter's, it may be extended to other crop species that form a canopy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2022.111373DOI Listing

Publication Analysis

Top Keywords

crop yield
16
plant
14
bambara groundnut
12
individual plant
12
mathematical model
8
climate change
8
crop
8
plant traits
8
traits plant
8
plant height
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!