Class 1 and Class 2 integrons are mobilizable elements able to carry a variety of antibiotic resistance determinants. In the present study, Class 1 and 2 integrons present in 355 pathogenic Escherichia coli (285 diarrheagenic, of these 129 were enteropathogenic, 90 enteroaggregative, 66 enterotoxigenic, and 70 bacteremic) isolated from healthy and ill children under age 5 from periurban areas of Lima, Peru, were characterized. The presence of integrase 1 and 2 was established by polymerase chain reaction (PCR), and variable regions were grouped by PCR-restriction fragment length polymorphism and subsequent sequencing. Antimicrobial resistance was established by disk diffusion. Ninety-seven isolates (27.3%) presented integrase 1, and 16 (4.5%) presented integrase 2 (P < 0.0001); in addition, seven (2.0%) isolates, six diarrheagenic and one bacteremic, presented both integrase genes. The presence of integrase 1 was more frequent among bacteremic isolates (P = 0.0004). Variable regions were amplified in 76/120 (63.3%) isolates with up to 14 gene arrangements. The most prevalent gene cassettes were those encoding dihydrofolate reductases as well as aminoglycoside modifying enzymes. Of note, Class 1 integrons tended to be associated with the presence of extended-spectrum β-lactamases (ESBLs). A variety of Class 1 and 2 integrons were detected in diarrheagenic and bacteremic E. coli, demonstrating the heterogeneity of variable regions circulating in the area. The association of integrons with ESBLs is worrisome and has an impact on the development of multidrug resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9833068 | PMC |
http://dx.doi.org/10.4269/ajtmh.22-0239 | DOI Listing |
J Environ Manage
January 2025
Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain.
The present study evaluates for the first time the seasonal performance of an innovative green groundwater treatment. The pilot plant combines microalgae-bacteria treatment and a cork-wood biofilter to reduce nitrates, pesticides, antibiotics (ABs), and antibiotic resistance genes (ARGs) from groundwater. Groundwater had nitrate concentrations ranging from 220 to 410 mg/L, while ABs (sulfonamides and fluoroquinolones) and pesticides (triazines) were detected at concentrations ranging from a few ng/L to 150 ng/L.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania.
This study examines the prevalence and the mechanisms of antibiotic resistance in isolates collected from healthcare units in Northwestern Transylvania, Romania, between 2022 and 2023. Given the alarming rise in antibiotic resistance, the study screened 34 isolates for resistance to 10 antibiotics, 46 ARGs, and integrase genes using PCR analysis. The results reveal a concerning increase in multidrug-resistant (MDR) and extensively drug-resistant (XDR) isolates over the two-year period.
View Article and Find Full Text PDFJ Infect Dev Ctries
December 2024
Department of Medical Microbiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey.
Introduction: This study aims to investigate the presence of class 1, 2, and 3 integrons in Acinetobacter baumannii isolates, evaluate the relationship between integrons and antibiotic resistance and determine the clonal relationship between isolates by PFGE method.
Methodology: A total of 188 A. baumannii strains between February 2020 and March 2023 were included in the study.
Braz J Microbiol
January 2025
ICAR-Central Institute of Fisheries Technology (ICAR-CIFT), Willingdon Island, Cochin, Kerala, 682029, India.
Aeromonas inhabit diverse aquatic habitats and are recognized as both opportunistic and primary pathogens of fish and humans. This study delineates the biochemical and gyrB sequence-based molecular identification of 14 Aeromonas strains isolated from aquatic environments in Kerala, India, identifying them as A. dhakensis (50%), A.
View Article and Find Full Text PDFFEMS Microbiol Lett
January 2025
Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India.
Verona-integron-metallo-β-lactamase (VIM-2) is one of the most widespread class B β-lactamase responsible for β-lactam resistance. Although active-site residues help in metal binding, the residues nearing the active-site possess functional importance. Here, to decipher the role of such residues in the activity and stability of VIM-2, the residues E146, D182, N210, S207, and D213 were selected through in-silico analyses and substituted with alanine using site-directed mutagenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!