In this work, we propose a new approach to diagnose if a water allocation scheme is compatible with long-term water security at the catchment scale, and suggest steps to achieve such compatibility. We argue that when the remaining flow of a river after upstream withdrawals is not sufficient to safeguarding ecological river functions, the basin is at extreme risk of water scarcity, which indicates that the water management is failing. To test this, we analysed the water scarcity risks and the safeguarded environmental flows (e-flows) in 277 basins across a wide range of hydro-climatic conditions in Chile (17-55°S). For each basin, water scarcity risks were assessed based on water stress indices (WSIs, computed as the ratio of withdrawals to water availability), considering two water-use scenarios: (i) WSI, where total withdrawals correspond to the maximum consumptive water allowed by the law, i.e., where only the e-flows protected by law remain in the river, and (ii) WSI, where total withdrawals correspond to the actual allocated consumptive water uses within the basins. Further, we evaluated the adequacy of the water management system to protect ecological river functions by contrasting the e-flows protected in Chile with those safeguarded in six other countries. The water allocation system in Chile incorporated the protection of minimum e-flows in 2005 and established that these do not exceed 20% of the mean annual streamflow, except in some exceptional cases. This upper limit is consistently lower than the e-flows safeguarded in other countries, where 20%-80% of the mean annual streamflow are protected. This turns out in WSI values between 80% and 100% in all basins, well above the threshold associated with over-committed basins under extreme risk of water scarcity (70% typically). When moving from the legally allowed to the actually allocated water use scenario, we found contrasting results: about 70% of the basins show low water scarcity risk (WSI <40%), while an 18% have WSI above 100%, indicating the allocation is going beyond current law limits and even beyond physical limits. Our results reveal that the link between e-flows, water allocation and water security has not been adequately incorporated in the current law. E-flows stipulated by law are insufficient to fulfil environmental requirements, while placing the basins under extreme risk of water scarcity if the total allowed withdrawals were exerted. To move towards a system that can effectively achieve long-term water security, we recommend: (i) To define tolerable water scarcity risks for basins, considering environmental requirements. (ii) To translate those risks into measurable basin indices to measure water security, such as the WSI. (iii) To set maximum water use limits (or minimum e-flows) within the basins that are compatible to the water security goals. If, under current and projected water availability conditions, the existing withdrawals exceed these limits, water managers should be able to adapt total consumption to the required limits.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2022.116914DOI Listing

Publication Analysis

Top Keywords

water scarcity
20
water
16
environmental flows
8
long-term water
8
water security
8
water allocation
8
ecological river
8
river functions
8
extreme risk
8
risk water
8

Similar Publications

This article evaluates the prospects for rainwater harvesting (RWH) as a means of optimizing water management in the Mandara Mountains. RWH is a small-scale water conservation approach for locally intercepting and storing rainfall before it enters the usual hydrologic cycle. This ancient practice has recently sustained lives in semiarid areas of the world (e.

View Article and Find Full Text PDF

Interfacial solar vapor generation (ISVG) accompanied by photocatalytic degradation holds immense potential to mitigate water scarcity and pollution. Distinct from the two detached functional components (photothermal agent and photocatalyst) in a conventional evaporator, in this study, an all-in-one photothermal/catalytic agent, nitrogen-containing honeycomb carbon nanosheets (NHC), was engineered for synergistic high-efficiency steam generation and photocatalysis functions. It was demonstrated that the superoxide radical generated on the surface of NHC conferred its catalytic activity to the photodegradation of organic pollutants under full solar spectrum irradiation.

View Article and Find Full Text PDF

Guava is a fruit crop widely exploited in the Northeast region of Brazil. However, its exploitation is limited by water scarcity and, in many cases, producers are forced to use water with high levels of salts in irrigation. Thus, it is necessary to develop techniques to induce plant tolerance to salt stress, and the foliar application of a non-enzymatic compound such as ascorbic acid is a promising alternative to mitigate the deleterious effects on plants.

View Article and Find Full Text PDF

Water scarcity is an ecological issue affecting over 10% of Europe. It is intensified by rising temperatures, leading to greater evaporation and reduced precipitation. Agriculture has been confirmed as the sector accounting for the highest water consumption globally, and it faces significant challenges relating to drought, impacting crop yields and food security.

View Article and Find Full Text PDF

Agriculture accounts for over 70% of global freshwater consumption, with increasing competition for water resources due to climate change and rising urban and industrial demands. This study analyzes the effect of deficit irrigation (DI) on the agronomic and physiological performance of pomegranate ( L.) in a Mediterranean climate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!