Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, Monte Carlo simulations were used to calculate the full-energy peak efficiency of a p-type coaxial high-purity germanium (HPGe) detector. The HPGe detector was modeled using MCNP6 and Geant4, and the thickness of the dead layer of germanium crystals was estimated for an accurate simulation. The dead layer was divided into front and side components, where a point source and a Marinelli beaker source were used to estimate each dead layer thickness. The model was validated by comparing the simulated as well as experimental results for the standard sources of cylindrical and Marinelli beakers. The Geant4 results and experimental results matched up to 4% in the 59.54-1836.05 keV energy range, while MCNP6 matched up to 6% when adjusted for coincidence summing effects. HPGe detector modeled in Monte Carlo simulations can be utilized for experimental validation and experimental setup prior to using actual HPGe detectors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.apradiso.2022.110597 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!