Background: Monkeypox virus is an enveloped DNA virus that belongs to Poxviridae family. The virus is transmitted from rodents to primates via infected body fluids, skin lesions, and respiratory droplets. After being infected with virus, the patients experience fever, myalgia, maculopapular rash, and fluid-filled blisters. It is necessary to differentiate monkeypox virus from other poxviruses during diagnosis which can be appropriately envisioned via DNA analysis from swab samples. During small outbreaks, the virus is treated with therapies administered in other orthopoxviruses infections and does not have its own specific therapy and vaccine. Consequently, in this article, two potential peptides have been designed.

Methods: For the purpose of designing a vaccine, protein sequences were retrieved followed by the prediction of B- and T-cell epitopes. Afterward, vaccine structures were predicted which were docked with toll-like receptors. The docked complexes were analyzed with iMODS. Moreover, vaccine constructs nucleotide sequences were optimized and expressed in silico.

Results: COP-B7R vaccine construct (V1) has antigenicity score of 0.5400, instability index of 29.33, z-score of - 2.11-, and 42.11% GC content whereas COP-A44L vaccine construct (V2) has an antigenicity score of 0.7784, instability index of 23.33, z-score of - 0.61, and 48.63% GC content. It was also observed that COP-A44L can be expressed as a soluble protein in Escherichia coli as compared to COP-B7R which requires a different expression system.

Conclusion: The obtained results revealed that both vaccine constructs show satisfactory outcomes after in silico investigation and have significant potential to prevent the monkeypox virus. However, COP-A44L gave better results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9724569PMC
http://dx.doi.org/10.1016/j.jiph.2022.11.033DOI Listing

Publication Analysis

Top Keywords

monkeypox virus
12
vaccine
8
vaccine constructs
8
vaccine construct
8
construct antigenicity
8
antigenicity score
8
virus
7
designing multi-epitope
4
monkeypox
4
multi-epitope monkeypox
4

Similar Publications

Heterologous protein expression often faces significant challenges, particularly when the target protein has posttranslational modifications, is toxic, or is prone to misfolding. These issues can result in low expression levels, aggregation, or even cell death. Such problems are exemplified by the expression of phospholipase p37, a critical target for chemotherapeutic drugs against pathogenic human orthopoxviruses, including monkeypox and smallpox viruses.

View Article and Find Full Text PDF

To address the issues of infectious virus, bacterial secondary infections, skin pigmentation, and scarring caused by monkeypox virus (MPXV), a sprayable hydrogel with versatile functions was developed with comprehensive properties. Based on current research, the bioactive deep eutectic solvent (DES) of rosmarinic acid-proanthocyanidin-glycol (RPG) was designed and synthesized as active agent, and molecular docking was applied to discover its binding to MPXV proteins through H-bonds and van der Waals interactions, and the docking results show the binding energies between RA, PC, Gly and MPXV proteins are -58.7188, -50.

View Article and Find Full Text PDF

Monkeypox (mpox), caused by the MPOXV (monkeypox virus), has been endemic in Africa since its first identification in 1958. However, in May 2022, the world witnessed the first global outbreak associated with the West African clade. Even though thousands of cases have been recorded, our understanding of vertical transmission during pregnancy remains restricted due to an absence of reported cases in pregnant women and a lack of adequate clinical descriptions.

View Article and Find Full Text PDF

The outbreak of clade II monkeypox virus (MPXV) and the additional outbreak in Central Africa of clade I virus from 2023 have attracted worldwide attention. The development of a scalable and effective vaccine against the ongoing epidemic of mpox is urgently needed. We previously constructed two bivalent MPXV mRNA vaccines, LBA (B6R-A29L) and LAM (A35R-M1R), and a quadrivalent mRNA vaccine, LBAAM (B6R-A35R-A29L-M1R).

View Article and Find Full Text PDF

We previously reported that mice immunized twice with a lipid nanoparticle vaccine comprising four monkeypox viral mRNAs raised neutralizing antibodies and antigen-specific T cells and were protected against a lethal intranasal challenge with vaccinia virus (VACV). Here we demonstrated that the mRNA vaccine also protects mice against intranasal and intraperitoneal infections with monkeypox virus and bioluminescence imaging showed that vaccination greatly reduces or prevents VACV replication and spread from intranasal, rectal, and dermal inoculation sites. A single vaccination provided considerable protection that was enhanced by boosting for at least 4 months.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!