Background: The temporomandibular joint osteoarthritis (TMJ-OA) is characterized by progressive cartilage degradation, subchondral bone erosion, and chronic pain, leading to articular damage and chewing dysfunction. Studies have shown that interleukin-1β (IL-1β) plays a critical role in the development of TMJ-OA. Transglutaminase 2 (TG2) has been identified as a marker of chondrocyte hypertrophy and IL-1β was able to increase TG2 expression in chondrocytes. Therefore, the aim of this study was to explore the ability of TG2 inhibitors to suppress TMJ-OA progression.
Methods: Firstly, toluidine blue staining, cell counting kit-8 assay, immunocytofluorescent staining and western blot were used to investigate the anti-inflammatory effects of TG2 inhibitors in IL-1β-stimulated murine chondrocytes and the underlying mechanisms. Afterwards, micro-CT analysis, histological staining, immunohistochemical and immunohistofluorescent staining were used to evaluate the therapeutic efficacy of TG2 inhibitors in monosodium iodoacetate (MIA)-induced TMJ-OA in rats.
Results: TG2 inhibitors suppressed the IL-1β-induced upregulation of COX-2, iNOS, MMP-13, and MMP-3 and reversed the IL-1β-induced proteoglycan loss in chondrocytes through inhibiting NF-κB activation. Consistently, the MIA-induced upregulation of MMP-13 and MMP-3, and loss of structural integrity of the articular cartilage and subchondral bone were markedly reversed by TG2 inhibitors via inhibiting NF-κB activation.
Conclusions: TG2 inhibitors demonstrated a potent therapeutic efficacy on cartilage and subchondral bone structures of TMJ-OA by reducing inflammation and cartilage degradation through suppressing NF-κB activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.intimp.2022.109486 | DOI Listing |
Biomolecules
December 2024
Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620, USA.
Astrocytes play critical roles in supporting structural and metabolic homeostasis in the central nervous system (CNS). CNS injury leads to the development of a range of reactive phenotypes in astrocytes whose molecular determinants are poorly understood. Finding ways to modulate astrocytic injury responses and leverage a pro-recovery phenotype holds promise in treating CNS injury.
View Article and Find Full Text PDFAging Cell
January 2025
MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China.
Microglia, as resident immune cells in the central nervous system (CNS), play a crucial role in maintaining homeostasis and phagocytosing metabolic waste in the brain. Senescent microglia exhibit decreased phagocytic capacity and increased neuroinflammation through senescence-associated secretory phenotype (SASP). This process contributes to the development of various neurodegenerative diseases, including Alzheimer's disease (AD).
View Article and Find Full Text PDFCytojournal
November 2024
Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China.
Objective: Macrophages perform vital functions in cardiac remodeling after myocardial infarction (MI). Transglutaminase 2 (TG2) participates in fibrosis. Nevertheless, the role of TG2 in MI and mechanisms underlying macrophage polarization are unclear.
View Article and Find Full Text PDFFEBS J
December 2024
Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary.
Transglutaminase 2 (TG2) is a uniquely versatile protein with diverse catalytic activities, such as transglutaminase, protein disulfide isomerase, GTPase and protein kinase, and participates in several biological processes. According to information available in the RBP2GO database, TG2 can act as an RNA-binding protein (RBP). RBPs participate in posttranscriptional gene expression regulation, therefore influencing the function of RNA, whereas RNA molecules can also modulate the biological activity of RBPs.
View Article and Find Full Text PDFBioorg Med Chem Lett
December 2024
Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada. Electronic address:
Tissue transglutaminase (TG2) is a multifunctional protein that can catalyze the cross-linking between proteins, and function as a G-protein. TG2's unregulated behaviour has been associated with fibrosis, celiac disease and cancer metastasis. Recently, small molecule irreversible inhibitors have been designed, bearing an electrophilic warhead that can react with the catalytic cysteine, abolishing TG2's catalytic and G-protein capabilities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!