Pristine and halogen doped β12 borophene, as anode of lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs), was considered by first-principles study based on density functional theory. Li and Na were adsorbed on β12 borophene with adsorption energies of -3.18 eV and -2.33 eV, respectively. The effect of halogen addition, X = F, Cl, Br, and I, to borophene sheet on adsorption and also diffusion pathways of Li and Na was studied. The adsorption energy calculations show that the halogen atoms improve Li/Na adsorption on borophene sheet. Also, the results indicate that Li/Na adsorption energies on Brominated borophene sheet are higher compared to other halogen types. Diffusion calculations show that Br addition induces an electron deficiency on BoBr surface which lowers the energy barrier of migration of Li and Na ions compared to the pristine borophene. According to density of states analysis, electron charge is transferred from Li and Na atoms toward halogenated borophene sheet. Also, it can be concluded that electron transfer from Li/Na to borophene host in BoX is higher compared to pristine borophene which is in agreement with adsorption energies. The fully lithiated/sodiated complexes of BoBr are LiBoBr and NaBoBr which is equivalent to theoretical specific capacities of 1401 and 981 mAh/g which are about 3.5 and 2.6 times higher than graphite for Li and Na adsorption, respectively. Higher specific capacity of Li compared to Na is mainly attributed to steric hindrance of Na regarding its greater size. Open circuit voltage values of 1.6 V and 1.4 V were obtained for Li and Na intercalation processes, respectively, into halogen added β borophene indicating that this structure can be applied as anode for both LIB and SIB systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmgm.2022.108373 | DOI Listing |
Sci Rep
January 2025
Faculty of Physics, University of Warsaw, Pasteura 5, 02093, Warsaw, Poland.
Recent experimental realizations of bilayer boron materials motivated us to study the structure and properties of α-sheet-based bilayer borophenes with interlayer covalent bonds. As shown here, at least three stacking variations are possible: AA, AB, and [Formula: see text]. The on-top AA-stacking has been obtained experimentally supported on a metallic substrate.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2025
Key Laboratory of Materials Modification By Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China. Electronic address:
ACS Nano
November 2024
CAS Key Laboratory of Science and Technology on Applied Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, 116023 Dalian, China.
Two-dimensional (2D) borophene materials are predicted to be ideal catalytic materials due to their structural analogy to graphene. However, the lack of chemical functionalization of borophene hinders its practical application in catalysis. Herein, we reported a massive production of freestanding few-layer 2D borophene oxide (BO) sheets with tunable active oxygen species by a moderate oxidation-assisted exfoliation method.
View Article and Find Full Text PDFJ Phys Condens Matter
October 2024
National Key Laboratory of Plasma Physics, Research Center of Laser Fusion, CAEP, Mianyang 621900, People's Republic of China.
The striking electronic characteristics of graphene trigger immense interests and continual explora-tions for new two-dimensional (2D) Dirac materials. By first-principles electronic structure calculations, we here identify a new set of 2D semimetals in hydro-/halogen embedding trigonalborophene, namely-BX (X = H, F, Cl), that possess the graphene-like massless Dirac fermions. Owing to the central hollow B atoms strongly hybridized to the hydro-/halogen adatoms, adequate charge transfer is induced from the hollow B to the basal honeycomb B sublattice, which electronically stabilizes the 2D sheet and decisively endows a robust (intrinsic and stable-against-strains) graphene-like Dirac cone state.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
State Key Laboratory of Mechanics and Control for Aerospace Structures, Laboratory of Intelligent Nano Materials and Devices of Ministry of Education, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
Neuromorphic computing, marked by its parallel computational abilities and low power usage, has become pivotal in advancing artificial intelligence. However, the advancement of neuromorphic computing has faced significant obstacles due to the performance limitations of traditional memory devices struggling with high power consumption and limited reliability. Two-dimensional (2D) materials have been extensively investigated as high-performance memristive materials, but they are often restricted by fixed memristive properties, which complicate circuit design and limit flexibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!