Due to environmental pollution, crop growth and productivity are threatened at different levels. Recapitulation of changes in plant bodies due to water pollution and mitigating strategies reveal the need for précised actions to save crop losses. The present study was carried out to estimate modulations in growth, mineral homeostasis, and nutrient profile of fruits in Capsicum annum L. grown with three concentrations of wastewater (25, 50, 100%) and two levels of silver nanoparticles (40 and 80 mg/L AgNPs). It has been reported that ion accumulation patterns from wastewater clearly vary among crops. Our findings manifested that the application of AgNPs significantly improved the mineral ions in different plant tissues, that ultimately helped to improve growth. Highest improvements were recorded for root shoot P (316 and 197%) at T9 (80 mg/L AgNPs + normal water), while K (273 and 262%), Mg (638 and 916%), and Ca (148 and 273%), at T11 (80 mg/L AgNPs + 50% Wastewater), in comparison with control. Such reduction in elemental uptake that remain detrimental even at low concentrations positively correlates with growth and nutrition of Capsicum plants. Another facet of our observation is dose-dependent improvement in nutritive attributes of fruits i.e., crude fibers, proteins, and carbohydrates by AgNPs. T8 (40 mg/L AgNPs + 100% Wastewater), improved nutritional attributes such as P (55%), Mn (44%), Zn (38%), Carbohydrates (62%), Crude fat (38%), and Fibers (49%) as compared to control. Application of silver nanoparticles (AgNPs) combined with untreated wastewater (WW) reduced the hazards of contaminants in plants. The finding of the current study suggested that AgNPs are a cost-efficient and environment friendly material having the potential to mitigate harmful impacts of WW on plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2022.12.005 | DOI Listing |
Chem Commun (Camb)
January 2025
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China.
We fabricated flexible, three-dimensional (3D) ordered silicon nanowire (SiNW) arrays decorated with high-density silver nanoparticles (AgNPs) for the sensitive and reproducible detection of pesticide residues. These sensors demonstrated a detection limit of 10 M for methyl parathion (MPT) on curved surfaces.
View Article and Find Full Text PDFChemistry
January 2025
Shanghai University, Chemistry, 99 Shang-da Road, 200444, Shanghai, CHINA.
Pillararenes and their derivatives have emerged in supramolecular chemistry as unique macrocycles for applications in host-guest chemistry, materials science and biomimetics. Many variations have been conceived and synthesized in recent years and in this review, we relate progress in water-soluble versions: leaning towerarenes, extended-pillararenes, biphenarenes, helicarenes and octopusarenes. These are applied in targeted drug delivery, selective uptake and release of aromatic guests, fabrication of gold/silver and mesoporous silica nanoparticles, cell imaging, pollutant separation, biomedicine (e.
View Article and Find Full Text PDFNanoscale
January 2025
State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, No. 29, 13th Street, TEDA, Tianjin 300457, P. R. China.
The remarkable catalytic activity, optical properties, and electrochemical behavior of nanomaterials based on noble metals (NM) are profoundly influenced by their physical characteristics, including particle size, morphology, and crystal structure. Effective regulation of these parameters necessitates a refined methodology. Lignin, a natural aromatic compound abundant in hydroxyl, carbonyl, carboxyl, and sulfonic acid groups, has emerged as an eco-friendly surfactant, reducing agent, and dispersant, offering the potential to precisely control the particle size and morphology of NM-based nanomaterials.
View Article and Find Full Text PDFMol Biol Res Commun
January 2025
Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan.
is a gram-negative bacterium that causes a diversity of diseases in numerous plants. Strategies to inhibit growth include protective procedures; however, controlling the disease is complicated due to its rapid spread. Several antimicrobial agents can prevent this disease, such as chemical compounds, biological agents, secondary metabolites, nanoparticles, bacteriophages, and antimicrobial peptides (AMPs).
View Article and Find Full Text PDFCompelling concerns about antimicrobial resistance and the emergence of multidrug-resistant pathogens call for novel strategies to address these challenges. Nanoparticles show promising antimicrobial activities; however, their actions are hindered primarily by the bacterial hydrophilic-hydrophobic barrier. To overcome this, we developed a method of electrochemically anchoring sodium dodecyl sulfate (SDS) coatings onto silver nanoparticles (AgNPs), resulting in improved antimicrobial potency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!