Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
De novo proteins constructed from novel amino acid sequences are distinct from proteins that evolved in nature. Construct K (ConK) is a binary-patterned de novo designed protein that rescues from otherwise toxic concentrations of copper. ConK was recently found to bind the cofactor PLP (pyridoxal phosphate, the active form of vitamin B). Here, we show that ConK catalyzes the desulfurization of cysteine to HS, which can be used to synthesize CdS nanocrystals in solution. The CdS nanocrystals are approximately 3 nm, as measured by transmission electron microscope, with optical properties similar to those seen in chemically synthesized quantum dots. The CdS nanocrystals synthesized using ConK have slower growth rates and a different growth mechanism than those synthesized using natural biomineralization pathways. The slower growth rate yields CdS nanocrystals with two desirable properties not observed during biomineralization using natural proteins. First, CdS nanocrystals are predominantly of the zinc blende crystal phase; this is in stark contrast to natural biomineralization routes that produce a mixture of zinc blende and wurtzite phase CdS. Second, in contrast to the growth and eventual precipitation observed in natural biomineralization systems, the CdS nanocrystals produced by ConK stabilize at a final size. Future optimization of CdS nanocrystal growth using ConK-or other de novo proteins-may help to overcome the limits on nanocrystal quality typically observed from natural biomineralization by enabling the synthesis of more stable, high-quality quantum dots at room temperature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9907092 | PMC |
http://dx.doi.org/10.1073/pnas.2204050119 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!