Patients with type 2 diabetes are at high risk for development of cardiovascular disease, including myocardial infarction, stroke, heart failure, and cardiovascular death. Multiple large cardiovascular outcome trials with novel glucose-lowering agents, namely SGLT2i (SGLT2 inhibitors) and GLP-1 RA (GLP-1 receptor agonists), have demonstrated robust and significant reductions of major adverse cardiovascular events and additional cardiovascular outcomes, such as hospitalizations for heart failure. This evidence has changed the landscape for treatment of patients with type 2 diabetes. Both diabetes and cardiology guidelines and professional societies have responded to this paradigm shift by including strong recommendations to use SGLT2i and/or GLP-1 RA, with evidence-based benefits to reduce cardiovascular risk in high-risk individuals with type 2 diabetes, independent of the need for additional glucose control. GLP-1 RA were initially developed as glucose-lowering drugs because activation of the GLP-1 receptor by these agents leads to a reduction in blood glucose and an improvement in postprandial glucose metabolism. By stimulating GLP-1R in hypothalamic neurons, GLP-1 RA additionally induce satiety and lead to weight loss. Data from cardiovascular outcome trials demonstrated a robust and consistent reduction in atherothrombotic events, particularly in patients with established atherosclerotic cardiovascular disease. Despite the consistent evidence of atherosclerotic cardiovascular disease benefit from these trials, the number of patients receiving these drugs remains low. This overview summarizes the experimental and clinical evidence of cardiovascular risk reduction offered by GLP-1 RA, and provides practical information on how these drugs should be implemented in the treatment of type 2 diabetes in the cardiology community.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/CIRCULATIONAHA.122.059595 | DOI Listing |
Sci Rep
December 2024
Department of Pediatrics and Child Health Nursing, College of Medicine and Health Sciences, Injibara University, Injibara, Ethiopia.
Excessive daytime sleepiness is a common finding among type 2 diabetes mellitus patients. However there is scarce data that shows the magnitude of excessive daytime sleepiness, & its association with type 2 diabetes mellitus. Hence, the study aimed to assess the prevalence of excessive daytime sleepiness and its associated factors among type 2 diabetes mellitus patients at Wolkite University Specialized Hospital.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.
Programmable and modular systems capable of orthogonal genomic and transcriptomic perturbations are crucial for biological research and treating human genetic diseases. Here, we present the minimal versatile genetic perturbation technology (mvGPT), a flexible toolkit designed for simultaneous and orthogonal gene editing, activation, and repression in human cells. The mvGPT combines an engineered compact prime editor (PE), a fusion activator MS2-p65-HSF1 (MPH), and a drive-and-process multiplex array that produces RNAs tailored to different types of genetic perturbation.
View Article and Find Full Text PDFNutr Diabetes
December 2024
Department of International Medical, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China.
Background: Diabetes mellitus (DM) and arthritis are prevalent conditions worldwide. The intricate relationship between these two conditions, especially in the context of various subtypes of arthritis, remains a topic of interest.
Objective: To investigate the relationship between diabetes and arthritis, with a focus on Rheumatoid Arthritis (RA), using data from the National Health and Nutrition Examination Survey (NHANES) and Mendelian Randomization (MR) analysis.
J Biomed Mater Res B Appl Biomater
January 2025
Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.
IntroductionProlonged hyperglycemia in diabetic patients often impairs wound healing, leading to chronic infections and complications. This study aimed to evaluate the potential of fresh Tilapia fish skin as a treatment to enhance wound healing in diabetic rats. MethodsThirty-nine healthy adult albino rats, weighing between 150 and 200 g, were divided into three groups: non-diabetic rats with untreated wounds [C-], diabetic rats with untreated wounds [C+], and diabetic rats treated with fresh Tilapia skin [TT].
View Article and Find Full Text PDFIndian J Med Res
November 2024
Department of Pediatrics, University of Alabama at Birmingham, Division of Pediatric Endocrinology and Diabetes, Alabama, 35233, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!