AI Article Synopsis

  • The study investigated how uneven temperature distributions affect machine-learning algorithms' ability to predict temperatures using Laser Absorption Spectroscopy.
  • Three machine-learning models (GPR, VGG13, and BRF) performed well on uniform temperature profiles but struggled with nonuniform profiles, highlighting the inappropriateness of directly applying uniform-focused methods to nonuniform data.
  • After retraining GPR and VGG13 on nonuniform data, they demonstrated improved accuracy and adaptability, while BRF's performance declined, indicating that the level of nonuniformity influences how well different features are utilized in temperature prediction.

Article Abstract

The effect of spatial nonuniformity of the temperature distribution was examined on the capability of machine-learning algorithms to provide accurate temperature prediction based on Laser Absorption Spectroscopy. First, sixteen machine learning models were trained as surrogate models of conventional physical methods to measure temperature from uniform temperature distributions (uniform-profile spectra). The best three of them, Gaussian Process Regression (GPR), VGG13, and Boosted Random Forest (BRF) were shown to work excellently on uniform profiles but their performance degraded tremendously on nonuniform-profile spectra. This indicated that directly using uniform-profile-targeted methods to nonuniform profiles was improper. However, after retraining models on nonuniform-profile data, the models of GPR and VGG13, which utilized all features of the spectra, not only showed good accuracy and sensitivity to spectral twins, but also showed excellent generalization performance on spectra of increased nonuniformity, which demonstrated that the negative effects of nonuniformity on temperature measurement could be overcome. In contrast, BRF, which utilized partial features, did not have good generalization performance, which implied the nonuniformity level had impact on regional features of spectra. By reducing the data dimensionality through T-SNE and LDA, the visualizations of the data in two-dimensional feature spaces demonstrated that two datasets of substantially different levels of non-uniformity shared very closely similar distributions in terms of both spectral appearance and spectrum-temperature mapping. Notably, datasets from uniform and nonuniform temperature distributions clustered in two different areas of the 2D spaces of the t-SNE and LDA features with very few samples overlapping.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9744279PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0278885PLOS

Publication Analysis

Top Keywords

machine learning
8
laser absorption
8
nonuniformity temperature
8
temperature distributions
8
gpr vgg13
8
features spectra
8
generalization performance
8
t-sne lda
8
temperature
6
spectra
5

Similar Publications

Background: Acute pain management is critical in postoperative care, especially in vulnerable patient populations that may be unable to self-report pain levels effectively. Current methods of pain assessment often rely on subjective patient reports or behavioral pain observation tools, which can lead to inconsistencies in pain management. Multimodal pain assessment, integrating physiological and behavioral data, presents an opportunity to create more objective and accurate pain measurement systems.

View Article and Find Full Text PDF

Cross-Cultural Sense-Making of Global Health Crises: A Text Mining Study of Public Opinions on Social Media Related to the COVID-19 Pandemic in Developed and Developing Economies.

J Med Internet Res

January 2025

Unitat de Recerca i Innovació, Gerència d'Atenció Primària i a la Comunitat de la Catalunya Central, Institut Català de la Salut, Sant Fruitós de Bages, Spain.

Background: The COVID-19 pandemic reshaped social dynamics, fostering reliance on social media for information, connection, and collective sense-making. Understanding how citizens navigate a global health crisis in varying cultural and economic contexts is crucial for effective crisis communication.

Objective: This study examines the evolution of citizen collective sense-making during the COVID-19 pandemic by analyzing social media discourse across Italy, the United Kingdom, and Egypt, representing diverse economic and cultural contexts.

View Article and Find Full Text PDF

Large language models (LLMs) are being increasingly incorporated into scientific workflows. However, we have yet to fully grasp the implications of this integration. How should the advancement of large language models affect the practice of science? For this opinion piece, we have invited four diverse groups of scientists to reflect on this query, sharing their perspectives and engaging in debate.

View Article and Find Full Text PDF

Prediction of hip fracture by high-resolution peripheral quantitative computed tomography in older Swedish women.

J Bone Miner Res

January 2025

Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.

The socioeconomic burden of hip fractures, the most severe osteoporotic fracture outcome, is increasing and the current clinical risk assessment lacks sensitivity. This study aimed to develop a method for improved prediction of hip fracture by incorporating measurements of bone microstructure and composition derived from high-resolution peripheral quantitative computed tomography (HR-pQCT). In a prospective cohort study of 3028 community-dwelling women aged 75 to 80, all participants answered questionnaires and underwent baseline examinations of anthropometrics and bone by dual x-ray absorptiometry (DXA) and HR-pQCT.

View Article and Find Full Text PDF

With the increasing number of patients with Alzheimer's Disease (AD), the demand for early diagnosis and intervention is becoming increasingly urgent. The traditional detection methods for Alzheimer's disease mainly rely on clinical symptoms, biomarkers, and imaging examinations. However, these methods have limitations in the early detection of Alzheimer's disease, such as strong subjectivity in diagnostic criteria, high detection costs, and high misdiagnosis rates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!