AI Article Synopsis

  • Direct cellular reprogramming is being explored as a method to convert undifferentiated cancer cells like those in glioblastoma (GBM) into more specialized, less harmful cell types, specifically astrocytes.
  • Researchers overexpressed specific transcription factors in GBM cells, leading to a transformation into star-shaped, astrocyte-like cells that exhibit decreased growth and express glial markers.
  • The study shows that inducing astrocytic differentiation significantly reduces the tumorigenicity of GBM cells in mouse models, suggesting a novel therapeutic approach leveraging the cancer cell's plasticity.

Article Abstract

Direct cellular reprogramming has recently gained attention of cancer researchers for the possibility to convert undifferentiated cancer cells into more differentiated, postmitotic cell types. While a few studies have attempted reprogramming of glioblastoma (GBM) cells toward a neuronal fate, this approach has not yet been used to induce differentiation into other lineages and in vivo data on reduction in tumorigenicity are limited. Here, we employ cellular reprogramming to induce astrocytic differentiation as a therapeutic approach in GBM. To this end, we overexpressed key transcriptional regulators of astroglial development in human GBM and GBM stem cell lines. Treated cells undergo a remarkable shift in structure, acquiring an astrocyte-like morphology with star-shaped bodies and radial branched processes. Differentiated cells express typical glial markers and show a marked decrease in their proliferative state. In addition, forced differentiation induces astrocytic functions such as induced calcium transients and ability to respond to inflammatory stimuli. Most importantly, forced differentiation substantially reduces tumorigenicity of GBM cells in an in vivo xenotransplantation model. The current study capitalizes on cellular plasticity with a novel application in cancer. We take advantage of the similarity between neural developmental processes and cancer hierarchy to mitigate, if not completely abolish, the malignant nature of tumor cells and pave the way for new intervention strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9890139PMC
http://dx.doi.org/10.1158/1535-7163.MCT-21-0903DOI Listing

Publication Analysis

Top Keywords

astrocytic differentiation
8
cellular reprogramming
8
gbm cells
8
forced differentiation
8
cells
6
differentiation
5
gbm
5
transcription factor-forced
4
factor-forced astrocytic
4
differentiation impairs
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!