Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Salt and drought stresses are major factors limiting soybean (Glycine max [L.] Merr.) growth and development; thus, improving soybean stress tolerance is critical. In this study, both salt stress and drought stress induced mRNA levels of CONSTANS-like 1a (GmCOL1a) and stabilized the GmCOL1a protein. Transgenic 35S:GmCOL1a soybean plants exhibited enhanced salt and drought tolerance, with higher relative water content in leaves, greater proline content, lower malondialdehyde (MDA) content, and less reactive oxygen species (ROS) production compared with wild-type plants; the GmCOL1a knockout co-9 mutant showed opposite phenotypes. In addition, GmCOL1a promoted the expression of genes related to salt tolerance, effectively reducing the Na+/K+ ratio in soybean plants, especially in stems and leaves of 35S:GmCOL1a soybean. Chromatin immunoprecipitation sequencing (ChIP-seq) analysis identified two potential direct targets of GmCOL1a, late embryogenesis abundant (GmLEA) and Δ1-pyrroline-5-carboxylate synthetase (GmP5CS) genes, which were verified by chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR), electrophoretic mobility shift assay (EMSA), and transient transcriptional activation assays. GmCOL1a bound directly to the Myc(bHLH)-binding and Che-binding motifs of GmLEA and GmP5CS promoters to stimulate mRNA expression. Analysis of transgenic hairy-root GmP5CS:GmP5CS soybean plants in wild type, co-9, and 35S:GmCOL1a backgrounds further revealed that GmCOL1a enhances salt and drought tolerance by promoting GmP5CS protein accumulation in transgenic soybean hairy roots. Therefore, we demonstrate that GmCOL1a plays an important role in tolerance to abiotic stress in soybean.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10069889 | PMC |
http://dx.doi.org/10.1093/plphys/kiac573 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!