Purpose: Radiotherapy is a curative therapeutic modality used to treat cancers as a single agent or in combination with surgery and chemotherapy. Advanced radiotherapy technologies enable treatment with large fractions and highly conformal radiation doses to effect free-radical damage to cellular DNA leading to cell-cycle arrest, cell death, and innate immune response (IIR) stimulation.

Experimental Design: To understand systemic clinical responses after radiation exposure, proteomic and metabolomic analyses were performed on plasma obtained from patients with cancer at intervals after prostate stereotactic body radiotherapy. Pathway and multivariate analyses were used to delineate molecular alterations following radiotherapy and its correlation with clinical outcomes.

Results: DNA damage response increased within the first hour after treatment and returned to baseline by 1 month. IIR signaling also increased within 1 hour of treatment but persisted for up to 3 months thereafter. Furthermore, robust IIR and metabolite elevations, consistent with an early proinflammatory M1-mediated innate immune activation, were observed in patients in remission, whereas patients experiencing prostate serum antigen-determined disease progression demonstrated less robust immune responses and M2-mediated metabolite elevations.

Conclusions: To our knowledge, these data are the first report of longitudinal proteomic and metabolomic molecular responses in patients after radiotherapy for cancers. The data supports innate immune activation as a critical clinical response of patients receiving radiotherapy for prostate cancer. Furthermore, we propose that the observed IIR may be generalized to the treatment of other cancer types, potentially informing multidisciplinary therapeutic strategies for cancer treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9975665PMC
http://dx.doi.org/10.1158/1078-0432.CCR-22-2340DOI Listing

Publication Analysis

Top Keywords

innate immune
16
immune responses
8
responses patients
8
proteomic metabolomic
8
increased hour
8
hour treatment
8
immune activation
8
radiotherapy
7
patients
6
immune
5

Similar Publications

G-quadruplex-forming small RNA inhibits coronavirus and influenza A virus replication.

Commun Biol

January 2025

Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.

Future pandemic threats may be caused by novel coronaviruses and influenza A viruses. Here we show that when directly added to a cell culture, 12mer guanine RNA (G12) and its phosphorothioate-linked derivatives (G12(S)), rapidly entered cytoplasm and suppressed the propagation of human coronaviruses and influenza A viruses to between 1/100 and nearly 1/1000 of normal virus infectivity without cellular toxicity and induction of innate immunity. Moreover, G12(S) alleviated the weight loss caused by coronavirus infection in mice.

View Article and Find Full Text PDF

Toll-like receptors (TLRs) are crucial components of innate immunity. A specific form of genetic variation in TLR genes may increase the chance of developing leukemia. The present investigation conducted a comprehensive meta-analysis to examine the correlation between three TLR polymorphisms, namely TLR2 (rs3804099), TLR4 (rs4986790), and TLR9 (rs187084), within the leukemia risk group.

View Article and Find Full Text PDF

Ticam2 ablation facilitates monocyte exhaustion recovery after sepsis.

Sci Rep

January 2025

Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0910, USA.

Sepsis is a leading cause of death worldwide, with most patient mortality stemming from lingering immunosuppression in sepsis survivors. This is due in part to immune dysfunction resulting from monocyte exhaustion, a phenotype of reduced antigen presentation, altered CD14/CD16 inflammatory subtypes, and disrupted cytokine production. Whereas previous research demonstrated improved sepsis survival in Ticam2 mice, the contribution of TICAM2 to long-term exhaustion memory remained unknown.

View Article and Find Full Text PDF

Tertiary lymphoid structures (TLSs) are de novo ectopic lymphoid aggregates that regulate immunity in chronically inflamed tissues, including tumours. Although TLSs form due to inflammation-triggered activation of the lymphotoxin (LT)-LTβ receptor (LTβR) pathway, the inflammatory signals and cells that induce TLSs remain incompletely identified. Here we show that interleukin-33 (IL-33), the alarmin released by inflamed tissues, induces TLSs.

View Article and Find Full Text PDF

Identifying phase-separated structures remains challenging, and effective intervention methods are currently lacking. Here we screened for phase-separated proteins in breast tumour cells and identified forkhead (FKH) box protein M1 (FOXM1) as the most prominent candidate. Oncogenic FOXM1 underwent liquid-liquid phase separation (LLPS) with FKH consensus DNA element, and compartmentalized the transcription apparatus in the nucleus, thereby sustaining chromatin accessibility and super-enhancer landscapes crucial for tumour metastatic outgrowth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!