Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Synthetic plastics are becoming hazardous wastes, posing a threat to environmental sustainable health; hence, they must be replaced with alternatives. This study aimed to prepare corn starch-based bioplastics using fish scale through film casting technique as an alternative to synthetic plastics. In this work, four types of bioplastic films (CSF, CSFSF1, CSFSF2, FSF) containing different percentages of fish-scale powder and corn starch were prepared. Physical and chemical properties such as texture, color, solubility in hot water, tensile strength, functional groups, and morphology of all the four types of the prepared bioplastics were analyzed. The mixture of fish-scale powder and corn starch powder in the ratio of 1:3 (CSFSF1) yielded the best results. Its average thickness is 0.0420 ± 0.001 mm, water absorption range is 55-60%, tensile strength is 6.06 ± 0.05 MPa, and thermal stability is 278.741 °C. In the biodegradability test, degradation was noticed after 7 days of treatment with organic waste. The degradation was confirmed by surface changes in the morphology and the development of Aspergillus sp. Corn starch film (CSF) exhibited the highest degradation (60%), while the fish-scales film (FSF) underwent the least degradation (28%). The produced bioplastics were prepared from eco-friendly, inexpensive, and natural materials. Thus, the present research has provided a viable alternative to synthetic plastics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-24429-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!