GSK3β has been proposed to have an essential role in Coronaviridae infections. Screening of a targeted library of GSK3β inhibitors against both SARS-CoV-2 and HCoV-229E to identify broad-spectrum anti-Coronaviridae inhibitors resulted in the identification of a high proportion of active compounds with low toxicity to host cells. A selected lead compound, T-1686568, showed low micromolar, dose-dependent activity against SARS-CoV-2 and HCoV-229E. T-1686568 showed efficacy in viral-infected cultured cells and primary 2D organoids. T-1686568 also inhibited SARS-CoV-2 variants of concern Delta and Omicron. Importantly, while inhibition by T-1686568 resulted in the overall reduction of viral load and protein translation, GSK3β inhibition resulted in cellular accumulation of the nucleocapsid protein relative to the spike protein. Following identification of potential phosphorylation sites of Coronaviridae nucleocapsid, protein kinase substrate profiling assays combined with Western blotting analysis of nine host kinases showed that the SARS-CoV-2 nucleocapsid could be phosphorylated by GSK3β and PKCa. GSK3β phosphorylated SARS-CoV-2 nucleocapsid on the S180/S184, S190/S194 and T198 phospho-sites, following previous priming in the adjacent S188, T198 and S206, respectively. Such inhibition presents a compelling target for broad-spectrum anti-Coronaviridae compound development, and underlies the mechanism of action of GSK3β host-directed therapy against this class of obligate intracellular pathogens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9742639PMC
http://dx.doi.org/10.1186/s43556-022-00111-1DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 hcov-229e
8
broad-spectrum anti-coronaviridae
8
nucleocapsid protein
8
sars-cov-2 nucleocapsid
8
gsk3β
7
sars-cov-2
6
nucleocapsid
5
inhibition
4
inhibition glycogen
4
glycogen synthase
4

Similar Publications

Rapid Generation of Reverse Genetics Systems for Coronavirus Research and High-Throughput Antiviral Screening Using Gibson DNA Assembly.

J Med Virol

January 2025

State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.

Coronaviruses (CoVs) pose a significant threat to human health, as demonstrated by the COVID-19 pandemic. The large size of the CoV genome (around 30 kb) represents a major obstacle to the development of reverse genetics systems, which are invaluable for basic research and antiviral drug screening. In this study, we established a rapid and convenient method for generating reverse genetic systems for various CoVs using a bacterial artificial chromosome (BAC) vector and Gibson DNA assembly.

View Article and Find Full Text PDF

The common cold coronaviruses are a source of ongoing morbidity and mortality particularly among elderly and immunocompromised individuals. While cross-reactive immune responses against multiple coronaviruses have been described following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination, it remains unclear if these confer any degree of cross-protection against the common cold coronaviruses. A recombinant fowl adenovirus vaccine expressing the SARS-CoV-2 spike protein (FAdV-9-S19) was generated, and protection from SARS-CoV-2 challenge was shown in K18-hACE2 mice.

View Article and Find Full Text PDF

Human HKU1-reactive CD4 T cells are enriched for cytolytic potential that persists in older adults.

J Infect Dis

January 2025

David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA.

The emergence of SARS-CoV-2 increased interest in cellular immunity established by infections with human coronaviruses (HCoVs). Using PBMC from a cohort of human subjects collected prior to 2019, we assessed the abundance and phenotype of these CD4 T cells using cytokine Elispot assays. Unexpectedly, cytotoxic potential was uniquely enriched amongst HKU1-reactive CD4 T cells, as measured by quantification of granzyme producing cells.

View Article and Find Full Text PDF

The emergence of RNA viruses driven by global population growth and international trade highlights the urgent need for effective antiviral agents that can inhibit viral replication. Nucleoside analogs, which mimic natural nucleotides, have shown promise in targeting RNA-dependent RNA polymerases (RdRps). Starting from protected 5-iodouridine, we report the synthesis of -substituted-(1,3-diyne)-uridines nucleosides and their phosphoramidate prodrugs.

View Article and Find Full Text PDF

Despite all the progress in treating SARS-CoV-2, escape mutants to current therapies remain a constant concern. Promising alternative treatments for current and future coronaviruses are those that limit escape mutants by inhibiting multiple pathogenic targets, analogous to the current strategies for treating HCV and HIV. With increasing popularity and ease of manufacturing of RNA technologies for vaccines and drugs, therapeutic microRNAs represent a promising option.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!