Alkaline water electrolysis (AWE) is among the most developed technologies for green hydrogen generation. Despite the tremendous achievements in boosting the catalytic activity of the electrode, the operating current density of modern water electrolyzers is yet much lower than the emerging approaches such as the proton-exchange membrane water electrolysis (PEMWE). One of the dominant hindering factors is the high overpotentials induced by the gas bubbles. Herein, the bubble dynamics via creating the superaerophobic electrode assembly is optimized. The patterned Co-Ni phosphide/spinel oxide heterostructure shows complete wetting of water droplet with fast spreading time (≈300 ms) whereas complete underwater bubble repelling with 180° contact angle is achieved. Besides, the current collector/electrode interface is also modified by coating with aerophobic hydroxide on Ti current collector. Thus, in the zero-gap water electrolyzer test, a current density of 3.5 A cm is obtained at 2.25 V and 85 °C in 6 m KOH, which is comparable with the state-of-the-art PEMWE using Pt-group metal catalyst. No major performance degradation or materials deterioration is observed after 330 h test. This approach reveals the importance of bubble management in modern AWE, offering a promising solution toward high-rate water electrolysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9896032 | PMC |
http://dx.doi.org/10.1002/advs.202206180 | DOI Listing |
Environ Res
January 2025
School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR. China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR. China. Electronic address:
Antimony (Sb) contamination in water resources poses a critical environmental and health challenge globally. Sulfate reducing bacteria (SRB) are employed to reduce SO to S for removing Sb in a microbial electrolysis cell (MEC). Yet, the reduction efficiency of reducing SO and Sb(Ⅴ) through SRB remains relatively low, and the underlying mechanism remains elusive.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Henan Key Laboratory of Polyoxometalate Chemistry, School of Energy Science and Technology, Henan University, Zhengzhou 450046, PR China. Electronic address:
Due to the limited active sites and poor conductivity, the application of tungsten disulfide (WS) in alkaline water electrolysis remains a challenge. Herein, Ni-WS nanosheet arrays were in situ grown on the carbon fiber paper (Ni-WS/CFP) as an electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline media, and the introduction degree of Ni can be regulated by adjusting the electrodeposition time. When the electrodeposition time is 3 min, Ni ions are doped into the lattice of WS, and by prolonging the electrodeposition time to 10 min, the nickel disulfide (NiS) crystal phase is generated to form NiS@WS heterojunction.
View Article and Find Full Text PDFNat Commun
January 2025
School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
Designing efficient Ruthenium-based catalysts as practical anodes is of critical importance in proton exchange membrane water electrolysis. Here, we develop a self-assembly technique to synthesize 1 nm-thick rutile-structured high-entropy oxides (RuIrFeCoCrO) from naked metal ions assembly and oxidation at air-molten salt interface. The RuIrFeCoCrO requires an overpotential of 185 mV at 10 m A cm and maintains the high activity for over 1000 h in an acidic electrolyte via the adsorption evolution mechanism.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Departamento de Química Orgánica, Universidad de Zaragoza, 50009 Zaragoza, Spain.
Dye-sensitization is a promising strategy to improve the light absorption and photoactivity abilities of wide-bandgap semiconductors, like TiO. For effective water-splitting photoanodes with no sacrificial agents, the electrochemical potential of the dye must exceed the thermodynamic threshold needed for the oxygen evolution reaction. This study investigates two promising organic cyanoacrylic dyes, designed to meet that criterion by means of theoretical calculations.
View Article and Find Full Text PDFAntibiotics (Basel)
January 2025
Department of Physics Education, Faculty of Mathematics and Science, Universitas Negeri Yogyakarta, 1st Colombo St., Karangmalang, Sleman, Yogyakarta 55281, Indonesia.
The aim of this study was to develop an electrolysis system to produce silver nanoparticles free from toxic gases, as the most common reduction and electrolysis techniques produce nitrogen dioxide (NO) as a byproduct, which is harmful to human health. The new electrolysis system used two identical silver plate electrodes, replacing silver and carbon rods, and used water as the electrolyte instead of silver nitrate (AgNO) solution since AgNO is the source of NO. The electrolytic silver nanoparticles (ESNs) produced by the new system were characterized and compared with reductive silver nanoparticles (RSNs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!