Protein adsorption at the air-water interface is a serious problem in cryogenic electron microscopy (cryoEM) as it restricts particle orientations in the vitrified ice-film and promotes protein denaturation. To address this issue, the preparation of a graphene-based modified support film for coverage of conventional holey carbon transmission electron microscopy (TEM) grids is presented. The chemical modification of graphene sheets enables the universal covalent anchoring of unmodified proteins via inherent surface-exposed lysine or cysteine residues in a one-step reaction. Langmuir-Blodgett (LB) trough approach is applied for deposition of functionalized graphene sheets onto commercially available holey carbon TEM grids. The application of the modified TEM grids in single particle analysis (SPA) shows high protein binding to the surface of the graphene-based support film. Suitability for high resolution structure determination is confirmed by SPA of apoferritin. Prevention of protein denaturation at the air-water interface and improvement of particle orientations is shown using human 20S proteasome, demonstrating the potential of the support film for structural biology.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202205932DOI Listing

Publication Analysis

Top Keywords

support film
16
electron microscopy
12
tem grids
12
functionalized graphene
8
air-water interface
8
particle orientations
8
protein denaturation
8
holey carbon
8
graphene sheets
8
protein
5

Similar Publications

Localization of function within the brain and central nervous system is an essential aspect of clinical neuroscience. Classical descriptions of functional neuroanatomy provide a foundation for understanding the functional significance of identifiable anatomic structures. However, individuals exhibit substantial variation, particularly in the presence of disorders that alter tissue structure or impact function.

View Article and Find Full Text PDF

Higher potential leaching of inorganic and organic additives from biodegradable compared to conventional agricultural plastic mulch film.

J Hazard Mater

January 2025

Organic Geochemistry Unit, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK; School of Geography, University of Bristol, Bristol BS8 1SS, UK.

Plastic mulch films support global food security, however, their composition and the potential release rates of organic, metal and metalloid co-contaminants remains relatively unknown. This study evaluates the low molecular weight organic additives, metal and metalloid content and leaching from low density polyethylene (LDPE) and biodegradable plastic mulch films. We identified 59 organic additives, and non-intentionally added substances in the new LDPE films (39.

View Article and Find Full Text PDF

Aim: To evaluate an intervention (a film and electronic leaflet) disseminated via text message by general practices to promote COVID-19 preventative behaviours in Black and South Asian communities.

Methods: We carried out a before-and-after questionnaire study of attitudes to and implementation of COVID-19 preventative behaviours and qualitative interviews about the intervention with people registered with 26 general practices in England who identified as Black or South Asian.

Results: In the 108 people who completed both questionnaires, we found no significant change in attitudes to and implementation of COVID-19 preventative behaviours, although power was too low to detect significant effects.

View Article and Find Full Text PDF

This study thoroughly investigated the adsorption of Congo Red (CR) dye onto various microplastics (MPs), including high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), polypropylene (PP) and polyethylene terephthalate (PET). Initial adsorption capacities (q) revealed that HDPE had the highest value (21.90 mg/g), followed by PVC (4.

View Article and Find Full Text PDF

The shelf-life of grapes is reduced due to infection by various pathogens and mechanical damage, which consequently limits their availability on the market and results huge economic losses. Active packaging films are expected to overcome this problem. In this study, packaging films (CMC-Gly-PMA) were developed using wheat straw-based carboxymethyl cellulose (2 %), glycerol (30 % w/w of CMC) and polymalate (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!