Introduction: The intrinsic high heterozygosity of cassava makes conventional breeding ineffective for rapid genetic improvement. However, recent advances in next generation sequencing technologies have enabled the use of high-density markers for genome-wide association studies, aimed at identifying single nucleotide polymorphisms (SNPs) linked to major traits such as cassava mosaic disease (CMD) resistance, dry matter content (DMC) and total carotenoids content (TCC). A number of these trait-linked SNPs have been converted to Kompetitive allele-specific polymerase chain reaction (KASP) markers for downstream application of marker assisted selection.
Methods: We assayed 13 KASP markers to evaluate their effectiveness in selecting for CMD, DMC and TCC in 1,677 diverse cassava genotypes representing two independent breeding populations in Uganda.
Results: Five KASP markers had significant co-segregation with phenotypes; CMD resistance (2), DMC (1) and TCC (2), with each marker accounting for at least 30% of the phenotypic variation. Markers located within the chromosomal regions for which strong marker-trait association loci have been characterised (chromosome 12 markers for CMD, chromosome 1 markers for DMC and TCC) had consistently superior ability to discriminate the respective phenotypes.
Discussion: The results indicate varying discriminatory abilities of the KASP markers assayed and the need for their context-based use for MAS, with PSY2_572 particularly effective in selecting for high TCC. Availing the effective KASP markers on cost-effective genotyping platforms could facilitate practical implementation of marker-assisted cassava breeding for accelerated genetic gains for CMD, DMC and provitamin A carotenoids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9727383 | PMC |
http://dx.doi.org/10.3389/fpls.2022.1017275 | DOI Listing |
BMC Plant Biol
December 2024
Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, 830091, China.
Fruit diameter is one of important agronomy traits that has greatly impacts fruit yield and commercial value in cucumber (Cucumis sativus L.). Hence, we preliminary mapping of fruit diameter was conducted to refine its genetic locus.
View Article and Find Full Text PDFPoult Sci
December 2024
Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Hainan, Haikou 571101, PR China. Electronic address:
In order to provide a low-cost, high efficient, and highly accurate tool for molecular breeding of Jiaji ducks, we constructed a cGPS(Genotyping by Pinpoint Sequencing of captured targets) 20 K liquid-phase microarray using resequencing data from this valuable poultry breed for the first time. The microarray contains 20,327 high-quality snp loci, mainly from the 30 Jiaji duck resequencing samples collected in this study, and some loci were supplemented from the 135 duck resequencing data from KUNMING INSTITUTE OF ZOOLOGY.CAS.
View Article and Find Full Text PDFBMC Genomics
December 2024
Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610011, China.
Sweetpotato (Ipomoea batatas L.), an important food and industrial crop in the world, has a highly heterozygous hexaploid genome, making the development of single nucleotide polymorphism (SNP) markers challenging. Identifying SNP loci and developing practical SNP markers are crucial for genomic and genetic research on sweetpotato.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China.
Background: Peanut (Arachis hypogaea L.) is a globally important oilseed and cash crop. Web blotch is one of the most important peanut foliar diseases, causing severe yield losses worldwide.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
Introduction: Tomato () is a highly valuable fruit crop. However, due to the lack of scientific and accurate variety identification methods and unified national standards, production management is scattered and non-standard, resulting in mixed varieties. This poses considerable difficulties for the cataloging and preservation of germplasm resources as well as the identification, promotion, and application of new tomato varieties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!