Purpose: We propose a method to identify sensitive and reliable whole-lung radiomic features from computed tomography (CT) images in a nonhuman primate model of coronavirus disease 2019 (COVID-19). Criteria used for feature selection in this method may improve the performance and robustness of predictive models.

Approach: Fourteen crab-eating macaques were assigned to two experimental groups and exposed to either severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or a mock inoculum. High-resolution CT scans were acquired before exposure and on several post-exposure days. Lung volumes were segmented using a deep-learning methodology, and radiomic features were extracted from the original image. The reliability of each feature was assessed by the intraclass correlation coefficient (ICC) using the mock-exposed group data. The sensitivity of each feature was assessed using the virus-exposed group data by defining a factor R that estimates the excess of variation above the maximum normal variation computed in the mock-exposed group. R and ICC were used to rank features and identify non-sensitive and unstable features.

Results: Out of 111 radiomic features, 43% had excellent reliability ( ), and 55% had either good ( ) or moderate ( ) reliability. Nineteen features were not sensitive to the radiological manifestations of SARS-CoV-2 exposure. The sensitivity of features showed patterns that suggested a correlation with the radiological manifestations.

Conclusions: Features were quantified and ranked based on their sensitivity and reliability. Features to be excluded to create more robust models were identified. Applicability to similar viral pneumonia studies is also possible.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9731356PMC
http://dx.doi.org/10.1117/1.JMI.9.6.066003DOI Listing

Publication Analysis

Top Keywords

radiomic features
12
features
9
sensitive reliable
8
reliable whole-lung
8
computed tomography
8
nonhuman primate
8
primate model
8
model coronavirus
8
coronavirus disease
8
disease 2019
8

Similar Publications

Purpose: This study aimed to develop and validate a model for accurately assessing the risk of distant metastases in patients with gastric cancer (GC).

Methods: A total of 301 patients (training cohort, n = 210; testing cohort, n = 91) with GC were retrospectively collected. Relevant clinical predictors were determined through the application of univariate and multivariate logistic regression analyses.

View Article and Find Full Text PDF

Objectives: The accurate assessment of lymph node metastasis (LNM) can facilitate clinical decision-making on radiotherapy or radical hysterectomy (RH) in cervical adenocarcinoma (AC)/adenosquamous carcinoma (ASC). This study aims to develop a deep learning radiomics nomogram (DLRN) to preoperatively evaluate LNM in cervical AC/ASC.

Materials And Methods: A total of 652 patients from a multicenter were enrolled and randomly allocated into primary, internal, and external validation cohorts.

View Article and Find Full Text PDF

Predicting axillary lymph node metastasis in breast cancer using a multimodal radiomics and deep learning model.

Front Immunol

December 2024

Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China.

Objective: To explore the value of combined radiomics and deep learning models using different machine learning algorithms based on mammography (MG) and magnetic resonance imaging (MRI) for predicting axillary lymph node metastasis (ALNM) in breast cancer (BC). The objective is to provide guidance for developing scientifically individualized treatment plans, assessing prognosis, and planning preoperative interventions.

Methods: A retrospective analysis was conducted on clinical and imaging data from 270 patients with BC confirmed by surgical pathology at the Third Hospital of Shanxi Medical University between November 2022 and April 2024.

View Article and Find Full Text PDF

Aim: The current study aims to delineate subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), the sacrospinalis muscle, and all abdominal musculature at the L3-L5 vertebral level from non-contrast computed tomography (CT) imagery using deep learning algorithms. Subsequently, radiomic features are collected from these segmented images and subjected to medical interpretation.

Materials And Methods: This retrospective analysis includes a cohort of 315 patients diagnosed with acute necrotizing pancreatitis (ANP) who had undergone comprehensive whole-abdomen CT scans.

View Article and Find Full Text PDF

Objective: Differentiating between brain metastasis (BM) and glioblastoma (GBM) preoperatively is challenging due to their similar imaging features on conventional brain MRI. This study aimed to enhance diagnostic accuracy through a machine learning model based on MRI radiomics data.

Methods: This retrospective study included 235 patients with confirmed solitary BM and 273 patients with GBM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!