The ability of non-invasive brain stimulation to induce neuroplasticity and cause long-lasting functional changes is of considerable interest for the reversal of chronic pain and disability. Stimulation of the primary motor cortex (M1) has provided some of the most encouraging after-effects for therapeutic purposes, but little is known about its underlying mechanisms. In this study we combined transcranial Direct Current Stimulation (tDCS) and fMRI to measure changes in task-specific activity and interregional functional connectivity between M1 and the whole brain. Using a randomized counterbalanced sham-controlled design, we applied anodal and cathodal tDCS stimulation over the left M1. In agreement with previous studies, we demonstrate that tDCS applied to the target region induces task-specific facilitation of local brain activity after anodal tDCS, with the stimulation effects having a negative relationship to the resting motor threshold. Beyond the local effects, tDCS also induced changes in multiple downstream regions distinct from the motor system that may be important for therapeutic efficacy, including the operculo-insular and cingulate cortex. These results offer opportunities to improve outcomes of tDCS for the individual patient based on the degree of presumed neuroplasticity. Further research is still warranted to address the optimal stimulation targets and parameters for those with disease-specific symptoms of chronic pain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9732378 | PMC |
http://dx.doi.org/10.3389/fpain.2022.1005634 | DOI Listing |
Alzheimers Dement
December 2024
MJHS Institute for Innovation in Palliative Care, New York, NY, USA.
Background: Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation method. Short-term tDCS protocols have shown positive effects on cognitive outcomes in Alzheimer's Disease (AD) populations. Less is known about the long-term benefits of tDCS on cognition in AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Noord-Holland, Netherlands.
Background: Worldwide, 32 million Alzheimer's disease (AD) patients contribute to a large economic burden, making effective and safe therapies that slow or prevent the progression from pre-dementia or mild cognitive impairment (MCI) to AD of high priority. Transcranial alternating current stimulation (tACS) is a safe and patient-friendly non-invasive brain stimulation technique that serves as a potential candidate for slowing and/or reducing cognitive impairment. Application of tACS in the gamma (30-45 Hz) frequency range, specifically around 40 Hz, has been studied in patients with (pre-dementia) AD.
View Article and Find Full Text PDFIndividuals with general anxiety disorder (GAD) have an impaired future-oriented processing and altered reward perception, which might involve the ventromedial prefrontal cortex (vmPFC) and dorsolateral prefrontal cortex (dlPFC). Twenty-nine adults with GAD performed the balloon analogue risk-taking task (BART) and delay discounting task (DDT) during five sessions of transcranial direct current stimulation (tDCS) with different stimulation conditions. The stimulation conditions were: anodal dlPFC (F3)/cathodal vmPFC (Fp2), anodal vmPFC (Fp2)/cathodal dlPFC (F3), anodal dlPFC (F3)/cathodal right shoulder, anodal vmPFC (Fp2)/cathodal left shoulder, and sham stimulation.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden.
Background And Objective: The Scania Accelerated Intermittent Theta-burst Implementation Study (SATIS) aimed to investigate the tolerability, preliminary effectiveness, and practical feasibility of an accelerated intermittent theta burst stimulation (aTBS) protocol in treating depression.
Methods: We used an open-label observational design, recruiting 20 patients (aged 19-84 years) from two public brain stimulation centers in Sweden. During the five-day treatment period and at a follow-up visit after 30 days we closely monitored adverse events and collected self-rated side effect data.
Cerebellum
January 2025
Department of Neuroscience and Physiology, Grossman School of Medicine, NYU Neuroscience Institute, New York University, New York, NY, 10016, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!