Flexible piezoresistive pressure sensors have promising applications in wearable devices, artificial intelligence, and other fields. However, developing low-cost and high-performance pressure sensors still poses a great challenge. Herein, we utilize low-cost carbon black (CB) and multi-walled carbon nanotubes (MWCNTs) mixed in porous polydimethylsiloxane to assemble a flexible piezoresistive pressure sensor combined with interdigitated electrodes. Simultaneously, the COMSOL Multiphysics simulation analysis was performed to predict the sensing behavior of the pressure sensor, which was verified by experiments; the preparation of the pressure sensor was guided according to the prediction. Additionally, we studied the effects of the mixed conductive filler's weight ratio, the shape of the interdigital electrode, and the line width and spacing of the interdigital electrode on the performance of the sensor. Based on the interaction of the 3D porous structure and the synergistic conductive network of CB/MWCNTs, the prepared pressure sensor exhibits a high sensitivity of 3.57 kPa (∼21 kPa), a wide detection range of 0-275 kPa, fast response time (96 ms), fast recovery time (198 ms), good durability (about 3000 cycles), and good flexibility. Moreover, the fabricated sensor can monitor and recognize human activities (such as finger bending and mouse clicking), indicating that it has great potential in flexible wearable devices and other fields. It is worth noting that the preparation process of the entire pressure sensor was simple, low cost, and environmentally friendly, which provides a certain basis for industrial and commercial applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9730765PMC
http://dx.doi.org/10.1021/acsomega.2c06548DOI Listing

Publication Analysis

Top Keywords

pressure sensor
24
pressure
8
sensor
8
flexible piezoresistive
8
piezoresistive pressure
8
pressure sensors
8
wearable devices
8
interdigital electrode
8
carbon
4
carbon black/multi-walled
4

Similar Publications

Anthropogenic activities have led to increased stress on our marine and other aquatic environments. There is a pressing need to monitor, measure, understand and mitigate causes of these pressures. This paper presents a novel optical head for monitoring and measuring marine based optical phenomena.

View Article and Find Full Text PDF

Background: Ambient air pollution, detrimental built and social environments, social isolation (SI), low socioeconomic status (SES), and rural (versus urban) residence have been associated with cognitive decline and risk of Alzheimer's disease and related dementias (ADRD). Research is needed to investigate the influence of ambient air pollution and built and social environments on SI and cognitive decline among rural, disadvantaged, ethnic minority communities. To address this gap, this cohort study will recruit an ethnoracially diverse, rural Florida sample in geographic proximity to seasonal agricultural burning.

View Article and Find Full Text PDF

Purpose: Scleral cross-linking (SXL) with ultraviolet A (UVA) and riboflavin has already been used in laboratory studies for scleral stiffness increase as a potential treatment for progressive myopia and scleral ectasia. This study aims to investigate whether the regional application of scleral cross-linking (SXL) with ultraviolet A (UVA) and riboflavin in fresh porcine eye globes affects the ocular rigidity as well as its impact on intraocular pressure after an induced acute increase in the volume of intraocular fluid.

Methods: The study included two groups of fresh porcine eyes: an experimental group (n=20) that underwent scleral cross-linking (SXL) with riboflavin and UVA applied to the posterior sclera and a control group (n=20) that did not receive SXL treatment.

View Article and Find Full Text PDF

Supramolecular Ionic Gels for Stretchable Electronics and Future Directions.

ACS Mater Au

January 2025

Department of Electrical and Electronic Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobataku, Kitakyushu, Fukuoka 804-8550, Japan.

Ionic gels (IGs), ionic liquids (ILs) dispersed in polymers, exhibit extremely low vapor pressure, electrochemical and thermal stability, and excellent mechanical characteristics; therefore, they are used for fabricating stretchable sensors, electrochemical transistors, and energy storage devices. Although such characteristics are promising for flexible and stretchable electronics, the mechanical stress-induced ruptured covalent bonds forming polymer networks cannot recover owing to the irreversible interaction between the bonds. Physical cross-linking via noncovalent bonds enables the interaction of polymers and ILs to form supramolecular IGs (SIGs), which exhibit favorable characteristics for wearable devices that conventional IGs with noncovalent bonds cannot achieve.

View Article and Find Full Text PDF

Bionic Luminescent Sensors Based on Covalent Organic Frameworks: Auditory, Gustatory, and Olfactory Information Monitoring for Multimode Perception.

ACS Nano

January 2025

Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China.

The synthesis of covalent organic frameworks (COFs) with excellent luminescent properties and their effective application in the field of bionic sensing remain a formidable challenge. Herein, a series of COFs with different numbers of hydroxyl groups are successfully synthesized, and the number of hydroxyl groups on the benzene-1,3,5-tricarbaldehyde (BTA) linker influences the properties of the final COFs. The COF (HHBTA-OH) prepared with hydrazine hydrate (HH) and BTA containing one hydroxyl group as the ligands exhibits the best fluorescent performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!