The core-tube method is a common method to measure the coal seam gas content (CSGC). However, cutting heat and friction heat will be generated in the core-tube coring process, which will increase the coal core temperature and the coal core gas loss, thus resulting in a large error in the determination of the gas content. The accuracy of the gas content determination is closely related to the temperature variation of coal core during core-taking. Based on this, the team developed the "thermal effect simulation device of coal core in the core-taking process" and carried out the temperature change test experiment of the coal core in the core-taking process under different conditions. The results show that the temperature variation of the coal core during the core-taking process shows four stages: constant temperature, rapid temperature rise, slow temperature rise, and temperature drop. The temperature rise rate, temperature rise duration, and temperature rise peak of the coal core increase with the increase in rotate speed, coal strength, friction area, and frictional load. In the axial direction, the closer to the upper end of the core pipe, the higher the core temperature. In the radial direction, the closer the core is to the wall of the core pipe, the higher the core temperature is. Under the influence of cutting heat and friction heat in the process of core-taking, the maximum heating rate of the core-taking tube wall within 8 min is 20 °C/min, the peak temperature is 158.4 °C, the average temperature of the wall is above 100 °C, and the average temperature rise of the coal core reaches 55.7 °C. Within 60 min, the average temperature of the coal core remained above 50 °C. The order of influence of coal core temperature from large to small is as follows: rotate speed, frictional load, friction area, and coal strength. It can provide a reference for accurately determining CSGC using the core-tube method or designing a coring device to eliminate or reduce the thermal effect during coring.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9730512 | PMC |
http://dx.doi.org/10.1021/acsomega.2c06015 | DOI Listing |
Sci Rep
January 2025
School of Mechanical Engineering, Liaoning Technical University, Fuxin, 123000, China.
Drums are the core working mechanism of the coal mining machine for coal mining. The structural design level of the drum is crucial for mining efficiency and safety production. Traditional design methods not only have long design cycles and high costs, but also limited design capabilities.
View Article and Find Full Text PDFACS Omega
December 2024
College of Mining, Guizhou University, Guiyang 550025, China.
Nanoindentation has gained significant attention as a method for the quantitative characterization of mechanical properties of materials at micro- and nanoscales. This study investigates trends in nanoindentation technology by visualizing and analyzing relevant publications. To achieve this, CiteSpace was utilized to analyze 14 373 papers from the Web of Science core database published between 2013 and 2022.
View Article and Find Full Text PDFSci Rep
January 2025
Shandong Yankuang Intelligent Manufacturing Co., Jining, 272000, China.
The hydraulic column is a core component in the coal mine support system, however, the real-time monitoring of the hydraulic column during the service process of the hydraulic support faces challenges. To address these issues, a high-precision stress mapping method of hydraulic column is proposed. The hydraulic column loss function was constructed to guide the data-driven model training, and the cylinder stress mechanism model was established by using the elastic-plastic theory of thick-walled cylinder.
View Article and Find Full Text PDFSci Rep
January 2025
Safety Technology Center of Guizhou Coal Mine Safety Supervision Bureau, Guiyang, 550081, Guizhou, China.
Anthropogenic emissions of non-CO greenhouse gases, such as low-concentration coal mine methane (cCH < 30 vol%), have a significant impact on global warming. The main component of coal mine methane is methane (CH), which is both a greenhouse gas and a high-quality clean energy gas. To study the combustion and heat transfer reactions of low-concentration coal mine methane in a catalytic oxidation device, a numerical simulation approach was employed to establish a model of the catalytic oxidation device that includes periodic boundary conditions, methane combustion mechanisms, and turbulent-laminar flow characteristics.
View Article and Find Full Text PDFStroke
January 2025
Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China (X.C., L.H., Y.L., Yiran Zhang, X.L., S.L., L.Y., Q.D.).
Background: Whether it is effective and safe to extend the time window of intravenous thrombolysis up to 24 hours after the last known well is unknown. We aimed to determine the efficacy and safety of tenecteplase in Chinese patients with acute ischemic stroke due to large/medium vessel occlusion within an extended time window.
Methods: Patients with ischemic stroke presenting 4.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!