Glycosylated protein nano encapsulation was an efficient encapsulation technology, but its embedding rate for EGCG was not high, and the research on the embedding mechanism was relatively weak. Based on this, this study compared the embedding effect of glycosylated peanut globulin and glycosylated casein on EGCG. The embedding mechanism of EGCG with glycosylated protein was discussed by ultraviolet, fluorescence, infrared and fluorescence microscopy. Results revealed that the highest encapsulation efficiency of EGCG was 93.89 ± 1.11%. The neutral pH value and 0.3 mg/mL EGCG addition amount were suitable for EGCG glycosylated nanocomposites. The hydrogen bond between EGCG hydroxyl group and tyrosine and tryptophan of glycosylated protein is mainly non covalent. The encapsulation effect of EGCG glycosylated nanocomposites could be quenched by changing the polar environment and spatial structure of the group. The fluorescence characteristic and dispersibility of EGCG glycosylated peanut globin were higher than EGCG glycosylated casein. This study might provide a theoretical basis for EGCG microencapsulation technology and EGCG application in tea beverage and liquid tea food systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9732124 | PMC |
http://dx.doi.org/10.1016/j.crfs.2022.11.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!