Adult Stem Cells for Cartilage Regeneration.

Cureus

Faculty of Biology, Medicine and Health, Manchester Medical School, The University of Manchester, Manchester, GBR.

Published: December 2022

AI Article Synopsis

  • Cartilage has limited self-repair abilities due to its lack of blood vessels and nerves, making issues like osteoarthritis hard to treat, with no effective cures available.
  • Research focuses on various cell sources for creating articular cartilage, noting that autologous chondrocyte implantation has not shown strong long-term results.
  • Mesenchymal stem cells (MSCs) appear to be the most promising option for cartilage regeneration, while human embryonic stem cells (hESCs) require more research to improve their differentiation into quality chondrocytes.

Article Abstract

As cartilage is an avascular, aneural structure, it has very low capabilities of self-repair. Osteoarthritis prevalence is increasing, and there are no clinically approved management techniques that can cure the degradation of cartilage. This report investigates the efficacy of different sources of cells to generate articular cartilage. Autologous chondrocyte implantation has been used to some extent in clinics; however it has not generated efficient, reliable results, and there is no evidence of long-term success. The usage of stem cells is more promising, particularly mesenchymal stem cells (MSCs). Human embryonic stem cells (hESCs) have also been trialed; however, it is important to note that the process of differentiation into chondrocytes is not fully understood, and the cartilage produced can often be of poor quality. MSCs seems to be the way forward, and hESCs will perhaps need further study with the usage of MSC differentiation methodology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9727652PMC
http://dx.doi.org/10.7759/cureus.32280DOI Listing

Publication Analysis

Top Keywords

stem cells
16
cells
5
cartilage
5
adult stem
4
cells cartilage
4
cartilage regeneration
4
regeneration cartilage
4
cartilage avascular
4
avascular aneural
4
aneural structure
4

Similar Publications

Background: The common drugs used for the treatment of Newly Diagnosed Multiple Myeloma (NDMM) include bortezomib and lenalidomide, but the adverse effects of lenalidomide cannot be ignored, especially when it is used in the initial therapy.

Methods: This retrospective study evaluated the efficacy and safety of a modified DVD regimen (pegylated liposomal doxorubicin, bortezomib, and dexamethasone) followed by lenalidomide in the treatment of NDMM. A total of 40 NDMM patients were treated with a reduced dose of pegylated liposomal doxorubicin (20 mg/m) on day 1, subcutaneous bortezomib (1.

View Article and Find Full Text PDF

Advances in RNA editing in hematopoiesis and associated malignancies.

Blood

January 2025

State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; Center for Stem Cell Medicine,, Tianjin, China.

Adenosine-to-inosine (A-to-I) RNA editing is a prevalent RNA modification essential for cell survival. The process is catalyzed by the Adenosine Deaminase Acting on RNA (ADAR) enzyme family that converts adenosines in double-stranded RNAs (dsRNAs) into inosines, which are read as guanosines during translation. Deep sequencing has helped to reveal that A-to-I editing occurs across various types of RNAs to affect their functions.

View Article and Find Full Text PDF

A single-cell atlas of the Culex tarsalis midgut during West Nile virus infection.

PLoS Pathog

January 2025

Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.

The mosquito midgut functions as a key interface between pathogen and vector. However, studies of midgut physiology and virus infection dynamics are scarce, and in Culex tarsalis-an extremely efficient vector of West Nile virus (WNV)-nonexistent. We performed single-cell RNA sequencing on Cx.

View Article and Find Full Text PDF

Whipworms (Trichuris spp) are ubiquitous parasites of humans and domestic and wild mammals that cause chronic disease, considerably impacting human and animal health. Egg hatching is a critical phase in the whipworm life cycle that marks the initiation of infection, with newly hatched larvae rapidly migrating to and invading host intestinal epithelial cells. Hatching is triggered by the host microbiota; however, the physical and chemical interactions between bacteria and whipworm eggs, as well as the bacterial and larval responses that result in the disintegration of the polar plug and larval eclosion, are not completely understood.

View Article and Find Full Text PDF

Purpose: Rose Bengal Photodynamic Therapy (RB-PDT) offers dual therapeutic benefits by enhancing corneal stiffness and providing antibacterial activity, presenting significant potential for patients with keratoconus complicated by keratitis. Our purpose was to assess the effect of rose bengal photodynamic therapy (RB-PDT) on the expression of pro-inflammatory cytokines and chemokines, as well as on extracellular matrix (ECM)-related molecules, in lipopolysaccharide (LPS)-induced inflammation of keratoconus human corneal fibroblasts (KC-HCFs). Additionally, the involvement of the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways which are downstream of the Toll-like receptor 4 (TLR4) pathway were examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!