A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Computerized tumor-infiltrating lymphocytes density score predicts survival of patients with resectable lung adenocarcinoma. | LitMetric

A high abundance of tumor-infiltrating lymphocytes (TILs) has a positive impact on the prognosis of patients with lung adenocarcinoma (LUAD). We aimed to develop and validate an artificial intelligence-driven pathological scoring system for assessing TILs on H&E-stained whole-slide images of LUAD. Deep learning-based methods were applied to calculate the densities of lymphocytes in cancer epithelium (DLCE) and cancer stroma (DLCS), and a risk score (WELL score) was built through linear weighting of DLCE and DLCS. Association between WELL score and patient outcome was explored in 793 patients with stage I-III LUAD in four cohorts. WELL score was an independent prognostic factor for overall survival and disease-free survival in the discovery cohort and validation cohorts. The prognostic prediction model-integrated WELL score demonstrated better discrimination performance than the clinicopathologic model in the four cohorts. This artificial intelligence-based workflow and scoring system could promote risk stratification for patients with resectable LUAD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9730047PMC
http://dx.doi.org/10.1016/j.isci.2022.105605DOI Listing

Publication Analysis

Top Keywords

well score
16
tumor-infiltrating lymphocytes
8
patients resectable
8
lung adenocarcinoma
8
scoring system
8
score
6
computerized tumor-infiltrating
4
lymphocytes density
4
density score
4
score predicts
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!