Brain tumours are the most common solid tumour in children and the leading cause of cancer related death in children. Current treatments include surgery, chemotherapy and radiotherapy. The need for aggressive treatment means many survivors are left with permanent severe disability, physical, intellectual and social. Recent progress in immunotherapy, including genetically engineered T cells with chimeric antigen receptors (CARs) for treating cancer, may provide new avenues to improved outcomes for patients with paediatric brain cancer. In this review we discuss advances in CAR T cell immunotherapy, the major CAR T cell targets that are in clinical and pre-clinical development with a focus on paediatric brain tumours, the paediatric brain tumour microenvironment and strategies used to improve CAR T cell therapy for paediatric tumours.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9727400PMC
http://dx.doi.org/10.3389/fonc.2022.873722DOI Listing

Publication Analysis

Top Keywords

car cell
16
paediatric brain
16
brain tumours
12
advances car
8
cell immunotherapy
8
paediatric
5
brain
5
cell
4
immunotherapy paediatric
4
tumours
4

Similar Publications

T-cell redirecting therapy (TCRT), specifically chimeric antigen receptor T-cell therapy (CAR T-cells) and bispecific T-cell engagers (TCEs) represent a remarkable advance in the treatment of multiple myeloma (MM). There are several products available around the world and several more in development targeting primarily B-cell maturation antigen (BCMA) and G protein-coupled receptor class C group 5 member D (GRPC5D). The relatively rapid availability of multiple immunotherapies brings the necessity to understand how a certain agent may affect the safety and efficacy of a subsequent immunotherapy so MM physicians and patients can aim at optimal sequential use of these therapies.

View Article and Find Full Text PDF

Background: Anti-CD19 CAR T-cells have revolutionized outcomes in relapsed/refractory large B-cell lymphomas. Long-term follow-up underscored the role of hematological toxicity in non-relapse mortality, largely driven by infections, leading to the development of the CAR-HEMATOTOX (HT) score for predicting neutropenia. The European scientific community (EHA/EBMT) later reached a consensus, defining a new entity: immune effector cell-associated hematotoxicity (ICAHT).

View Article and Find Full Text PDF

Background: CAR T-cell therapy (CAR-T) is leading to durable responses in patients with cancer but there is concern that cytokine release syndrome (CRS) and neurotoxicity may impact survivors' cognitive function. We assessed long-term cognitive function in CAR-T recipients and examine factors associated with change in cognition over time.

Methods: We assessed perceived cognition (Functional Assessment of Cancer Therapy - Cognition) and neurocognitive performance (standardized neuropsychological battery) in adult patients prior to receiving CAR-T and at 6 month follow-up.

View Article and Find Full Text PDF

Gene armoring: A way to enhance CAR-T cell function.

Pharmacol Res

January 2025

Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China; Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China. Electronic address:

View Article and Find Full Text PDF

The recent development of modular universal chimeric antigen receptor (CAR) T-cell platforms that use bifunctional adaptor intermediates to redirect engineered T-cell effector function has greatly expanded the capabilities of adoptive T-cell therapy, enabling safer and more comprehensive cancer treatment. However, universal CAR receptor systems rely on unstable transient recognition of tag-coupled intermediates for T-cell activation, and the array of targeting intermediates has been limited to antibodies and small molecules. Addressing these shortcomings, we engineered universal CAR T-cell receptors that can be covalently modified with synthetic biomaterials by accelerated SpyCatcher003-SpyTag003 chemistry for cancer-cell targeting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!