Efficient synthesis of α-galactosylceramide and its C-6 modified analogs.

Front Chem

Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, College of Marine Science, Hainan University, Haikou, China.

Published: November 2022

The synthesis of α-galactosylceramide (KRN7000) and its C-6 modified analogs remains a challenge due to the difficult α-1,2--glycosidic bond. A non-participating benzyl (Bn) protecting group has been commonly used to favor the α-glycosylation product. Here, we report the α-selective glycosylation by using a bulky 4,6-O-di--butylsilylene (DTBS) galactosyl donor, regardless of the 2-benzoyl (Bz) participating group. Compared with Bn, Bz groups can be selectively removed in basic conditions without impacting the C-6 azide modification. The azide has the potential for clicking with alkyne or being easily transformed to other functional groups.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9732566PMC
http://dx.doi.org/10.3389/fchem.2022.1039731DOI Listing

Publication Analysis

Top Keywords

synthesis α-galactosylceramide
8
c-6 modified
8
modified analogs
8
efficient synthesis
4
α-galactosylceramide c-6
4
analogs synthesis
4
α-galactosylceramide krn7000
4
krn7000 c-6
4
analogs remains
4
remains challenge
4

Similar Publications

Low humidity detection down to the parts per million level is urgently demanded in various industrial applications. The hardly detected tiny electrical signal variations caused by a very small amount of water adsorption are one of the intrinsic reasons that restrain the detection limit of the humidity sensors. Herein, a carbon-based field-effect transistor (FET) humidity sensor utilizing adsorbed water as the dual function of a sensing gate and analyte was proposed.

View Article and Find Full Text PDF

Laetrile, known as vitamin B17, is often used interchangeably with amygdalin. Laetrile is a semi-synthesis product of amygdalin, whereas amygdalin is a naturally occurring substance in many plants. Both compounds have a nitrile functional group that, when activated by the intestinal enzyme β-glucosidases, releases hydrogen cyanide.

View Article and Find Full Text PDF

ERMP1 as a newly identified ER stress gatekeeper in chronic kidney disease.

Am J Physiol Renal Physiol

January 2025

Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.

ERMP1 is involved in the Unfolded Protein Response (UPR) pathway in response to endoplasmic reticulum (ER) stress. Given the pivotal role of ER stress in the pathogenesis of acute and chronic kidney diseases, we hypothesized that ERMP1 could be instrumental in the development of renal injury. analysis of RNA sequencing datasets from renal biopsies were exploited to assess the expression of ERMP1 in the kidney under normal or pathological conditions.

View Article and Find Full Text PDF

Objectives: Hepatocellular carcinoma (HCC) represents the third-most prevalent cancer in humans worldwide. The current study's objective is to search for the potentiality of H. Wendl () leaf extract in a nanoemulsion (NE) form in enhancing radiotherapy against HCC induced in rats using diethylnitrosamine (DEN).

View Article and Find Full Text PDF

Understanding the dynamic pathophysiology of diseases in the lung, such as asthma and chronic asthma, chronic obstructive pulmonary disease, and lung cancer, is crucial for the treatment, analysis, and outcome of these diseases. Unlike other traditional models, we suggest a protocol that is sustainable and reproducible and offers different analysis methods while maintaining in vivo lung architecture and immune dynamics. This protocol allows one to study the pathophysiological changes, including changes to the immune cells, cytokines, and mediators, in 30 precision-cut lung slices from a single murine lung.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!