This work reports on the fabrication of three-dimensional (3D) magnesium substituted bi-phasic calcium phosphate (Mg-BCP) scaffolds by gel-casting, their structural and physico-chemical characterization, and on the assessment of their and performances. The crystalline phase assemblage, chemical functional groups and porous morphology features of the scaffolds were evaluated by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR) and field emission scanning electron microscopy (FE-SEM), respectively. The sintered scaffolds revealed an interconnected porosity with pore sizes ranging from 4.3 to 7.28 μm. The scaffolds exhibited good biomineralization activity upon immersion in simulated body fluid (SBF), while an study using MG-63 cell line cultures confirmed their improved biocompatibility, cell proliferation and bioactivity. Bone grafting of 3D scaffolds was performed in non-load bearing bone defects surgically created in tibia of rabbits, used as animal model. Histological and radiological observations indicated the successful restoration of bone defects. The overall results confirmed the suitability of the scaffolds to be further tested as synthetic bone grafts in bone regeneration surgeries and in bone tissue engineering applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9685373PMC
http://dx.doi.org/10.1039/d2ra04009cDOI Listing

Publication Analysis

Top Keywords

substituted bi-phasic
8
bi-phasic calcium
8
calcium phosphate
8
tissue engineering
8
bone defects
8
scaffolds
7
bone
6
fabrication biological
4
biological evaluation
4
evaluation three-dimensional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!