Graphitic carbon nitride (g-CN) has attracted enormous attention as a visible-light-responsive carbon-based semiconductor photocatalyst. However, fast charge recombination seriously limits its application. Therefore, it is urgent to modify the electronic structure of g-CN to obtain excellent photocatalytic activity. Herein, we reported a one-step thermal polymerization synthesis of nitrogen-rich g-CN nanosheets. Benefiting from the N self-doping and the ultrathin structure, the optimal CN-70 exhibits its excellent performance. A 6.7 times increased degradation rate of rhodamine B ( = 0.06274 min), furthermore, the hydrogen evolution efficiency also reached 2326.24 μmol h g ( > 420 nm). Based on a series of characterizations and DFT calculations, we demonstrated that the N self-doping g-CN can significantly introduce midgap states between the valence band and conduction band, which is more conducive to the efficient separation of photogenerated carriers. Our work provides a facile and efficient method for self-atom doping into g-CN, providing a new pathway for efficient photocatalysts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9682490 | PMC |
http://dx.doi.org/10.1039/d2ra05867g | DOI Listing |
Pharmaceutics
January 2025
Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy.
This study investigates the preparation of coamorphous systems composed entirely of active pharmaceutical ingredients (APIs), namely praziquantel, niclosamide, and mebendazole. The objective was to formulate and characterize binary and ternary coamorphous systems to evaluate their structural, thermal, and stability properties. Ten different mixtures (binary and ternary) were designed through a mixture design approach and prepared using a sustainable, one-step neat grinding process in a lab-scale vibrational mill.
View Article and Find Full Text PDFVet Sci
January 2025
College of Animal Science and Technology, Shihezi University, Shihezi 832003, China.
(1) Background: In recent years, the increasing emergence of multidrug-resistant pathogens in pig farms has begun to pose a severe threat to animal welfare and, by extension, public health. In this study, we aimed to explore the biological characteristics and genomic features of bacteriophages that are capable of lysing porcine multidrug-resistant , which was isolated from sewage. In doing so, we provided a reference for phage therapies that can be used to treat multidrug-resistant strains.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Institute of Science and Engineering, Kanazawa University, Kakuma machi, Kanazawa 920 1192, Japan. Electronic address:
Lignocellulosic biomass-based plastics provide a sustainable alternative to petroleum-based plastics by converting agricultural by-products into value-added materials, promoting a circular economy. This study investigates the development of thermoplastics from sugar beet pulp (SBP), a by-product rich in cellulose and pectin. A one-pot direct transesterification process was used to fully substitute hydroxy groups in SBP with acyl chains of varying lengths (C2-C10), achieving up to 96 % substitution.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, China. Electronic address:
Hermetia illucens, with a short growth cycle, is promising as a valuable source of chitin. However, the optimal method for extracting chitin from this insect and its application for hemostasis has not been addressed. This work employed an environmentally friendly choline chloride-lactic acid deep eutectic solvent technology to extract chitin effectively from the Hermetia illucens pupae shells, realizing one-step removal of inorganic salts and proteins.
View Article and Find Full Text PDFLangmuir
January 2025
College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China.
Solar-driven interfacial evaporation technology is regarded as a promising strategy for global freshwater shortage owing to its green and sustainable desalination process. Graphene aerogel (GA) is widely utilized in the design of solar-driven steam generation systems due to its excellent photothermal conversion efficiency and broad spectral absorption. Given the significant impact of hydrophilicity and thermal insulation on the performance of evaporators, nitrogen doping in the graphene structure not only effectively enhances its wettability but also allows for moderate tuning of its thermal conductivity, thereby optimizing the overall performance of the evaporator.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!