Background: Mutations in lipoxygenase homology domain 1 () cause autosomal recessive inheritance, leading to high-frequency and intermediate-frequency hearing losses in patients. To date, studies on the localization of gene expression are limited. In this study, we aimed to observe the expressions of in zebrafish, C57BL/6 murine cochlea, and HEI-OC1 cells.
Methods: The expression of in the auditory system of zebrafish was explored by hybridization experiments of zebrafish embryos. The expression of in cochlear and HEI-OC1 cells of C57BL/6 mice was analyzed by immunofluorescence staining. Confocal microscopic in vivo imaging was used to detect the number and morphological characteristics of lateral line neuromasts and inner ear hair cells in zebrafish that knocked down gene. The effect of knockdown gene on the development of zebrafish otolith and semicircular canal was observed using microscopic. Transcriptome sequencing was used to identify downstream molecules and associated signaling pathways and validated by western blotting, immunostaining, and rescue experiments.
Results: Results of the hybridization with zebrafish embryos at different time points showed that was expressed in zebrafish at the inner ear and olfactory pores, while the immunostaining showed that was expressed in both C57BL/6 mouse cochlea and HEI-OC1 cells. Loxhd1b knockdown causes a decrease in the number of spinal and lateral line neuromasts in the inner ear of zebrafish, accompanied by weakened hearing function, and also leads to developmental defects of otoliths and ear follicles. The results of transcriptomics analysis revealed the downstream molecule brain-derived neurotrophic factor (BDNF) and verified that and BDNF regulate the formation of zebrafish hair cells by synergistic regulation of BDNF/TrkB/ERK pathway based on western blotting, immunostaining, and rescue experiments.
Conclusion: This was the first time that the BDNF/TrkB/ERK pathway was identified to play a critical role in the molecular regulation of the development of zebrafish hair cells and the auditory development by .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9729270 | PMC |
http://dx.doi.org/10.3389/fncel.2022.1065309 | DOI Listing |
Toxicology
January 2025
Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India. Electronic address:
Aniline Blue is a synthetic dye extensively used in various industries, including textiles, plastics, and biological research due to its effective staining properties. However, its environmental and health impacts, particularly its neurotoxic effects, are poorly understood. While the dye has been associated with carcinogenicity and organ toxicity, the neurobehavioral consequences of Aniline Blue exposure remain underexplored.
View Article and Find Full Text PDFInt J Pharm
January 2025
State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China. Electronic address:
Hepatocellular carcinoma is one of the leading causes of cancer deaths globally and a key hindrance to extending life expectancy. Celastrol (CEL) demonstrates excellent antitumor activity, but faces challenges like low solubility and a narrow therapeutic window, limiting its clinical application. To address these limitations, drug combinations and nano-delivery systems have emerged as effective solutions.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Plant and Environmental Health, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China; Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA. Electronic address:
Glyphosate is a non-selective herbicide widely used in agriculture, and its overexposure poses significant health and environmental risks. Herein, a novel Cu-coordinated fluorescent sensing system (HYBC-Cu system) based on acylhydrazone groups was designed, capable of glyphosate-specific recognition. The HYBC-Cu system was constructed with simple steps, with the advantages of short recognition time (< 1 min), good specificity, anti-interference, and excellent sensitivity (LOD = 95 nM).
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
Biology Department, University of Massachusetts Amherst, Amherst, MA, USA.
Background: High-throughput behavioral analysis is important for drug discovery, toxicological studies, and the modeling of neurological disorders such as autism and epilepsy. Zebrafish embryos and larvae are ideal for such applications because they are spawned in large clutches, develop rapidly, feature a relatively simple nervous system, and have orthologs to many human disease genes. However, existing software for video-based behavioral analysis can be incompatible with recordings that contain dynamic backgrounds or foreign objects, lack support for multiwell formats, require expensive hardware, and/or demand considerable programming expertise.
View Article and Find Full Text PDFSci Rep
January 2025
School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA.
The central nervous system (CNS) requires specialized blood vessels to support neural function within specific microenvironments. During neurovascular development, endothelial Wnt/β-catenin signaling is required for BBB development within the brain parenchyma, whereas fenestrated blood vessels that lack BBB properties do not require Wnt/β-catenin signaling. Here, we used zebrafish to further characterize this phenotypic heterogeneity of the CNS vasculature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!