Gut microbiome sheds light on the development and treatment of abdominal aortic aneurysm.

Front Cardiovasc Med

Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China.

Published: November 2022

Abdominal aortic aneurysm (AAA) is an inflammatory vascular disease with high disability and mortality. Its susceptible risk factors include old age, being male, smoking, hypertension, and aortic atherosclerosis. With the improvement of screening techniques, AAA incidence and number of deaths caused by aneurysm rupture increase annually, attracting much clinical attention. Due to the lack of non-invasive treatment, early detection and development of novel treatment of AAA is an urgent clinical concern. The pathophysiology and progression of AAA are characterized by inflammatory destruction. The gut microbiota is an "invisible organ" that directly or indirectly affects the vascular wall inflammatory cell infiltration manifested with enhanced arterial wall gut microbiota and metabolites, which plays an important role in the formation and progression of AAA. As such, the gut microbiome may become an important risk factor for AAA. This review summarizes the direct and indirect effects of the gut microbiome on the pathogenesis of AAA and highlights the gut microbiome-mediated inflammatory responses and discoveries of relevant therapeutic targets that may help manage the development and rupture of AAA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9732037PMC
http://dx.doi.org/10.3389/fcvm.2022.1063683DOI Listing

Publication Analysis

Top Keywords

gut microbiome
12
abdominal aortic
8
aortic aneurysm
8
aaa
8
progression aaa
8
gut microbiota
8
gut
6
microbiome sheds
4
sheds light
4
light development
4

Similar Publications

Sphingolipids are an essential lipid component of the skin barrier with alterations in skin sphingolipid composition associated with multiple skin disorders including psoriasis, atopic dermatitis, and ichthyosis. Contributions to skin sphingolipid abundance are not well characterized, thus the main method of modulating skin lipid levels is the topical application of creams rich with sphingolipids at the skin surface. Evidence that diet and gut microbiome function can alter skin biology proposes an intriguing potential for the modulation of skin lipid homeostasis through gut microbial metabolism, but potential mechanisms of action are not well understood.

View Article and Find Full Text PDF

The metabolism of steroids by the gut microbiome affects hormone homeostasis, impacting host development, mental health, and reproductive functions. In this study, we identify the Δ -3-ketosteroid 5β-reductase, 3β-hydroxysteroid dehydrogenase/Δ isomerase, and Δ -3-ketosteroid reductase enzyme families encoded by common human gut bacteria. Through phylogenetic reconstruction and mutagenesis, We show that 5β-reductase and Δ -3-ketosteroid reductase have evolved to specialize in converting diverse 3-keto steroid hormones into their 5β- and Δ -reduced derivatives.

View Article and Find Full Text PDF

Probiotics are live microorganisms that, when administered in adequate amounts, provide health benefits to the host. According to the International Society of Sports Nutrition (ISSN), probiotic supplementation can optimize the health, performance, and recovery of athletes at all stages of their careers. Recent research suggests that probiotics can improve immune system functions, reduce gastrointestinal distress, and increase gut permeability in athletes.

View Article and Find Full Text PDF

Captivity Reduces Diversity and Shifts Composition of the Great Bustard () Microbiome.

Ecol Evol

January 2025

Hebei Key Laboratory of Wetland Ecology and Conservation Hengshui China.

Captivity offers protection for endangered species, but for bustards, captive individuals face a higher risk of disease and exhibit lower reintroduction success rates. Changes in the diversity of host bacterial and fungal microbiota may be a significant factor influencing reintroduction success. The great bustard () is a globally recognized endangered bird species.

View Article and Find Full Text PDF

Gut microbiota are fundamental for healthy animal function, but the evidence that host function can be predicted from microbiota taxonomy remains equivocal, and natural populations remain understudied compared to laboratory animals. Paired analyses of covariation in microbiota and host parameters are powerful approaches to characterise host-microbiome relationships mechanistically, especially in wild populations of animals that are also lab models, enabling insight into the ecological basis of host function at molecular and cellular levels. The fruitfly is a preeminent model organism, amenable to field investigation by 'omic analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!