Objective: To investigate the role of Osteopontin (OPN) in mediating macroautophagy, autophagy, and neuroplasticity in the ipsilateral hemisphere after stroke.
Methods: Focal stroke was induced by photothrombosis in adult mice. Spatiotemporal expression of endogenous OPN and BECN1 was assessed by immunohistochemistry. Motor function was determined by the grid-walking and cylinder tasks. We also evaluated markers of neuroplasticity and autophagy using biochemical and histology analyses.
Results: Herein, we showed that endogenous OPN and beclin1 were increased in the peri-infarct area of stroked patients and mice. Intracerebral administration of OPN (0.1 mg/ml; 3 ml) significantly improved performance in motor behavioral tasks compared with non-OPN-treated stroke mice. Furthermore, the neural repair was induced in OPN-treated stroke mice. We found that OPN treatment resulted in a significantly higher density of a presynaptic marker (vesicular glutamate transporter 1, VgluT1) and synaptic plasticity marker (synaptophysin, SYN) within the peri-infarct region. OPN treatment in stroke mice not only increased protein levels of integrin β1 but also promoted the expression of beclin1 and LC3, two autophagy-related proteins in the peri-infarct area. Additionally, OPN-induced neuroplasticity and autophagy were blocked by an integrin antagonist.
Conclusion: Our findings indicate that OPN may enhance neuroplasticity via autophagy, providing a new therapeutic strategy for ischemic stroke.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9730111 | PMC |
J Neurosci Res
December 2024
Department of Neurology, Tokyo Woman's Medical University School of Medicine, Shinjuku, Japan.
Remote ischemic conditioning (RIC) has attracted considerable attention as a brain protection strategy, although its impact remains unclear. Hypothermia is the most effective strategy in experimental transient cerebral ischemia. Therefore, we compared the efficacy of RIC, hypothermia, and no treatment on cerebral ischemia.
View Article and Find Full Text PDFExp Neurol
December 2024
Department of Medicine, Cardiovascular Research Institute, University of Vermont, Colchester, VT 05446, USA; Department of Neurological Sciences and Neuroscience Graduate Program, University of Vermont, Burlington, VT 05401, USA. Electronic address:
Reciprocal communication between reactive astrocytes and microglial cells provides local, coordinated control over critical processes such as neuroinflammation, neuroprotection, and scar formation after CNS injury, but is poorly understood. The vasoactive peptide hormone endothelin (ET) is released and/or secreted by endothelial cells, microglial cells and astrocytes early after ischemic stroke and other forms of brain injury. To better understand glial cell communication after stroke, we sought to identify paracrine effectors produced and secreted downstream of astroglial endothelin receptor B (ETB) signaling.
View Article and Find Full Text PDFNeural Regen Res
November 2024
Department of Neurology, Sun Yat-sen Memorial Hospital, SunYat-sen University, Guangzhou, Guangdong Province, China.
Intrathecal administration of human umbilical cord mesenchymal stem cells may be a promising approach for the treatment of stroke, but its safety, effectiveness, and mechanism remain to be elucidated. In this study, good manufacturing practice-grade human umbilical cord mesenchymal stem cells (5 × 105 and 1 × 106 cells) and saline were administered by cerebellomedullary cistern injection 72 hours after stroke induced by middle cerebral artery occlusion in rats. The results showed (1) no significant difference in mortality or general conditions among the three groups.
View Article and Find Full Text PDFInt J Surg
November 2024
Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital Kaohsiung, Taiwan, R. O. C.
Background: We investigated whether shock wave (SW)-pretreated autologous adipocyte-derived mesenchymal stem cells (ADMSCs) seeded in the cell-sheet scaffold (CSS) could inhibit left ventricular (LV) remodeling and improve LV ejection fraction (LVEF) in old myocardial infarction (MI).
Methods: Mini-pigs (n=20) were divided into group 1 (sham-operated control), group 2 (old MI), group 3 (old MI + autologous ADMSCs/1.0×107 in CSS on LV myocardium), and group 4 [old MI + SW (0.
Keio J Med
November 2024
Department of Neurology, Tokai University School of Medicine, Isehara, Japan.
Previously, we reported that transplantation of regeneration-associated cells (RACs) via the ipsilateral external carotid artery reduced stroke volume in mice with permanent occlusion of the middle cerebral artery (MCA). However, intracarotid arterial transplantation is invasive and requires skill, and severe complications may occur, such as thromboembolism, infection, and decreased cerebral blood flow. This study aimed to investigate the efficacy of intravenous injection of RACs in reducing stroke volume and increasing anti-inflammatory and angiogenic factors in mice with focal cerebral ischemia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!