Introduction: Equine osteoarthritis (OA) is a heterogeneous, degenerative disease of the musculoskeletal system with multifactorial causation, characterized by a joint metabolic imbalance. Extracellular vesicles are nanoparticles involved in intracellular communication. Mesenchymal stem cell (MSC) therapy is a form of regenerative medicine that utilizes their properties to repair damaged tissues. Despite its wide use in veterinary practice, the exact mechanism of action of MSCs is not fully understood. The aim of this study was to determine the synovial fluid extracellular vesicle protein cargo following integrin α10β1-selected mesenchymal stem cell (integrin α10-MSC) treatment in an experimental model of equine osteoarthritis with longitudinal sampling.
Methods: Adipose tissue derived, integrin α10-MSCs were injected intraarticularly in six horses 18 days after experimental induction of OA. Synovial fluid samples were collected at day 0, 18, 21, 28, 35, and 70. Synovial fluid was processed and extracellular vesicles were isolated and characterized. Extracellular vesicle cargo was then analyzed using data independent acquisition mass spectrometry proteomics.
Results: A total of 442 proteins were identified across all samples, with 48 proteins differentially expressed (FDR ≤ 0.05) between sham-operated control joint without MSC treatment and OA joint treated with MSCs. The most significant pathways following functional enrichment analysis of the differentially abundant protein dataset were serine endopeptidase activity ( = 0.023), complement activation (classical pathway) ( = 0.023), and collagen containing extracellular matrix ( = 0.034). Due to the lack of an OA group without MSC treatment, findings cannot be directly correlated to only MSCs.
Discussion: To date this is the first study to quantify the global extracellular vesicle proteome in synovial fluid following MSC treatment of osteoarthritis. Changes in the proteome of the synovial fluid-derived EVs following MSC injection suggest EVs may play a role in mediating the effect of cell therapy through altered joint homeostasis. This is an important step toward understanding the potential therapeutic mechanisms of MSC therapy, ultimately enabling the improvement of therapeutic efficacy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9730043 | PMC |
http://dx.doi.org/10.3389/fvets.2022.1057667 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China.
Osteoporosis (OP) is a systemic skeletal disorder characterized by decreased bone mineral density and a heightened risk of fractures. Therapies for OP have primarily focused on balancing bone formation and bone resorption, but enhancing the remineralization of osteoporotic bone is also a key strategy for effective repair. Recent insights into biomineralization mechanisms have highlighted the essential role of mineral-containing extracellular vesicles (EVs) secreted by osteoblasts in promoting bone marrow mesenchymal stromal/stem cell (BMSC) differentiation and initiating matrix mineralization.
View Article and Find Full Text PDFAnal Chem
January 2025
The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
Swift and efficient enrichment and isolation of extracellular vesicles (EVs) are crucial for enhancing precise disease diagnostics and therapeutic strategies, as well as elucidating the complex biological roles of EVs. Conventional methods of isolating EVs are often marred by lengthy and laborious processes. In this study, we introduce an innovative approach to enrich and isolate EVs by leveraging the capabilities of DNA nanotechnology.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
March 2025
Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
Adeno-associated virus (AAV) expresses a membrane-associated accessory protein (MAAP), a small nonstructural protein, that facilitates AAV secretion out of the plasma membrane through an association with extracellular vesicles during AAV egress. Here, we investigated the host proteins that interact with AAV2 MAAP (MAAP2) using APEX2-mediated proximity labeling. We identified two SNARE proteins, Syntaxin 7 (STX7) and synaptosome-associated protein 23 (SNAP23), a vesicle (v-)SNARE and a target (t-)SNARE, respectively, that mediate intracellular trafficking of membrane vesicles aand exhibited associations with MAAP2 in HEK293 cells.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
School of Life Sciences, Anhui University, Hefei, China.
Probiotics have been established to exert a positive impact on the treatment of various diseases. Indeed, these active microorganisms have garnered significant attention in recent years for their potential to prevent and treat illnesses. Their beneficial effects have been hypothesized to be linked to their released extracellular vesicles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!