Objective: Elemene emulsion injection (EEI) has been approved for interventional and intracavitary chemotherapy in treating malignant ascites in China, but few studies have focused on the effects of EEI on gut microbiota and metabolites. In this study, we investigated the effects of EEI on the fecal microbiota and metabolites in healthy Sprague-Dawley (SD) rats.
Methods: We randomly assigned 18 male SD rats to three groups ( = 6 in each group): the sham group (group S), the low-concentration EEI group (L-EEI), and the high-concentration EEI group (H-EEI). The L-EEI and H-EEI rats were administered 14 days of consecutive EEI, 20 mg/kg, and 40 mg/kg intraperitoneally (IP). Group S rats were administered the same volume of normal saline. On day 14, each animal's feces were collected for metagenomic sequencing and metabolomic analysis, and the colonic contents were collected for 16S rRNA sequencing.
Results: EEI could alter the β-diversity but not the α-diversity of the fecal microbiota and induce structural changes in the fecal microbiota. Different concentrations of EEI affect the fecal microbiota differently. The effects of different EEI concentrations on the top 20 bacteria with significant differences at the species level among the three groups were roughly divided into three categories: (1) A positive or negative correlation with the different EEI concentrations. The abundance of increased as the EEI concentration increased, while the abundance of and decreased. (2) The microbiota showed a tendency to increase first, then decrease or decrease first, and then increase as EEI concentration increased-the abundance of , and tended to decrease with L-EEI but significantly increased with H-EEI. In contrast, L-EEI significantly increased and abundance, and abundance tended to increase, while H-EEI significantly decreased them. (3) L-EEI and H-EEI decreased the abundance of bacteria (, and ). Fecal metabolites, like microbiota, were sensitive to different EEI concentrations and correlated with fecal microbiota and potential biomarkers.
Conclusion: This study shows that intraperitoneal EEI modulates the composition of rat fecal microbiota and metabolites, particularly the gut microbiota's sensitivity to different concentrations of EEI. The impact of changes in the microbiota on human health remains unknown, particularly EEI's efficacy in treating tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9730252 | PMC |
http://dx.doi.org/10.3389/fmicb.2022.913461 | DOI Listing |
Afr J Reprod Health
December 2024
Department of Mammary gland, The First Affiliated Hospital of Zhejiang Chinese Medical University(Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang, 310006.
This study sought to compare bacterial abundance and diversity in milk and feces of healthy lactating women with patients suffering from lactation mastitis, explore the pathogenesis of lactation mastitis, and develop new ideas for its treatment and prevention from a microbiological perspective. A total of 19 lactating mastitis patients and 19 healthy lactating women were recruited. Milk and fecal Specimens were obtained from both groups, and microbial community structure was analyzed using 16S rRNA gene sequencing.
View Article and Find Full Text PDFNutrients
December 2024
Department of Internal Medicine VII, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540136 Targu Mures, Romania.
Noncoding RNAs, particularly microRNAs (miRNAs) and small interfering RNAs (siRNAs), have emerged as key players in the pathogenesis and therapeutic strategies for inflammatory bowel disease (IBD). MiRNAs, small endogenous RNA molecules that silence target mRNAs to regulate gene expression, are closely linked to immune responses and inflammatory pathways in IBD. Notably, miR-21, miR-146a, and miR-155 are consistently upregulated in IBD, influencing immune cell modulation, cytokine production, and the intestinal epithelial barrier.
View Article and Find Full Text PDFNutrients
December 2024
Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel.
The gut-brain axis plays an integral role in maintaining overall health, with growing evidence suggesting its impact on the development of various neuropsychiatric disorders, including depression. This review explores the complex relationship between gut microbiota and glutamate (Glu) regulation, highlighting its effect on brain health, particularly in the context of depression following certain neurological insults. We discuss how microbial populations can either facilitate or limit Glu uptake, influencing its bioavailability and predisposing to neuroinflammation and neurotoxicity.
View Article and Find Full Text PDFNutrients
December 2024
Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki 701-0193, Japan.
Background: Cactus contains dietary fiber and minerals and is expected to have preventive effects against diabetes, arteriosclerosis, and other diseases. Additionally, cactus intake induces the production of short-chain fatty acids derived from the gut microbiota, which might influence immune functions. In this study, we examined the effects of a cactus (: NC)-supplemented diet on lipopolysaccharide (LPS)-induced immune responses and intestinal barrier function.
View Article and Find Full Text PDFNutrients
December 2024
Bağcılar Training and Research Hospital, University of Health Sciences, Istanbul 34200, Turkey.
: The ketogenic diet (KD) is a dietary model that can impact metabolic health and microbiota and has been widely discussed in recent years. This study aimed to evaluate the effects of a 6-week KD on biochemical parameters, gut microbiota, and fecal short-chain fatty acids (SCFAs) in women with overweight/obesity. : Overall, 15 women aged 26-46 years were included in this study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!