A simple data-based advection-reaction (reactive transport) model applicable to both rivers and aquifers monitoring networks is proposed. It is built on (a) available monitoring data, and (b) graph-theoretical concepts, specifically making use of the Laplacian matrix to capture the network topology and the advection process. The method yields useful information regarding the dynamic spatial behavior of the variables monitored, expressed in terms of quantitative parameters like characteristic length, entropy, first-order decay constants, synchronization between sites, and the external inputs/outputs to the system. The model was tested in an unconfined shallow aquifer located in the lower Besòs River (Spain), in which 37 pharmaceutical compounds were monitored at 7 sites, alongside two campaigns (February and May 2021). Characteristic lengths were, on average, of the same order (24.5 m) as the mean distance between consecutive monitoring sites (33.6 m), thus reflecting an adequate monitoring network design. From an estimated mean advection velocity (0.24 m·h), first-order decay constants were calculated for each compound and campaign, with mean values of 0.025 h (February) and 0.005 h (May). Whereas entropy was generally slightly larger values in February than in May (mean values of 1.02 and 0.9 entropy units respectively), synchronization showed the opposite trend (mean values of 62.4% and 68.8% respectively). The input/output profiles were generally site-dependent, regardless of the compound, and campaign considered. • A new advection-reaction modeling approach directly based on experimental data obtained from monitoring campaigns together with the network topology is proposed. • The method yields new quantitative information regarding the dynamic behavior of the variables monitored, useful for both research and management purposes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9727636 | PMC |
http://dx.doi.org/10.1016/j.mex.2022.101948 | DOI Listing |
Sci Rep
January 2025
Department of Distributed Systems and Informatic Devices, Gliwice, Poland.
The advancement of IT systems necessitates efficient communication methods essential across various sectors, from streaming platforms to cloud-based solutions and Industry 4.0 applications. Enhancing Quality of Service (QoS) in computer networks by focusing on bandwidth and communication delay is critical.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
Persistent homology applied to the activity of grid cells in the Medial Entorhinal Cortex suggests that this activity lies on a toroidal manifold. By analyzing real data and a simple model, we show that neural oscillations play a key role in the appearance of this toroidal topology. To quantitatively monitor how changes in spike trains influence the topology of the data, we first define a robust measure for the degree of toroidality of a dataset.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
BM Research Europe, Hartree Centre, Daresbury WA4 4AD, United Kingdom.
In this Letter, we study the phase transition between amorphous ices and the nature of the hysteresis cycle separating them. We discover that a topological transition takes place as the system transforms from low-density amorphous ice (LDA) at low pressures to high-density amorphous ice (HDA) at high pressures. Specifically, we uncover that the hydrogen bond network (HBN) displays qualitatively different topologies in the LDA and HDA phases: the former characterized by disentangled loop motifs, with the latter displaying topologically complex long-lived Hopf-linked and knotted configurations.
View Article and Find Full Text PDFFiber link failure is a common and frequent failure type in terrestrial optical networks (TONs). To guarantee the stable operation of the TON against single or multi-link failures, various kinds of survivability technologies have been proposed. Although these survivability technologies are effective in many cases, a link cut set (LCS), which is a set of fiber links whose simultaneous failures can disconnect the TON, presents an extreme situation of network partitioning that these technologies cannot address.
View Article and Find Full Text PDFCommun Biol
January 2025
Institute of Automation, Chinese Academy of Sciences, Beijing, China.
Whether working memory (WM) is encoded by persistent activity using attractors or by dynamic activity using transient trajectories has been debated for decades in both experimental and modeling studies, and a consensus has not been reached. Even though many recurrent neural networks (RNNs) have been proposed to simulate WM, most networks are designed to match respective experimental observations and show either transient or persistent activities. Those few which consider networks with both activity patterns have not attempted to directly compare their memory capabilities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!