The clustered regularly interspaced short palindromic repeats (CRISPR)-based genetic screening has been demonstrated as a powerful approach for unbiased functional genomics research. Single-cell CRISPR screening (scCRISPR) techniques, which result from the combination of single-cell toolkits and CRISPR screening, allow dissecting regulatory networks in complex biological systems at unprecedented resolution. These methods allow cells to be perturbed en masse using a pooled CRISPR library, followed by high-content phenotyping. This is technically accomplished by annotating cells with sgRNA-specific barcodes or directly detectable sgRNAs. According to the integration of distinct single-cell technologies, these methods principally fall into four categories: scCRISPR with RNA-seq, scCRISPR with ATAC-seq, scCRISPR with proteome probing, and imaging-based scCRISPR. scCRISPR has deciphered genotype-phenotype relationships, genetic regulations, tumor biological issues, and neuropathological mechanisms. This review provides insight into the technical breakthrough of scCRISPR by systematically summarizing the advancements of various scCRISPR methodologies and analyzing their merits and limitations. In addition, an application-oriented approach guide is offered to meet researchers' individualized demands.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9896079 | PMC |
http://dx.doi.org/10.1002/advs.202204484 | DOI Listing |
Clin Exp Med
January 2025
Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
The demand for sensitive, rapid, and affordable diagnostic techniques has surged, particularly following the COVID-19 pandemic, driving the development of CRISPR-based diagnostic tools that utilize Cas effector proteins (such as Cas9, Cas12, and Cas13) as viable alternatives to traditional nucleic acid-based detection methods. These CRISPR systems, often integrated with biosensing and amplification technologies, provide precise, rapid, and portable diagnostics, making on-site testing without the need for extensive infrastructure feasible, especially in underserved or rural areas. In contrast, traditional diagnostic methods, while still essential, are often limited by the need for costly equipment and skilled operators, restricting their accessibility.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, People's Republic of China; Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, People's Republic of China; Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, People's Republic of China. Electronic address:
Background: In current years, the CRISPR (clustered regularly interspaced short palindromic repeats) based strategies have emerged as the most promising molecular tool in the field of gene editing, intracellular imaging, transcriptional regulation and biosensing. However, the recent CRISPR-based diagnostic technologies still require the incorporation of other amplification strategies (such as polymerase chain reaction) to improve the cis/trans cleavage activity of Cas12a, which complicates the detection workflow and lack of a uniform compatible system to respond to the target in one pot.
Results: To better fully-functioning CRISPR/Cas12a, we reported a novel technique for straightforward nucleic acid detection by incorporating enzyme-responsive steric hindrance-based branched inhibitors with CRISPR/AsCas12a methodology.
Anal Chim Acta
January 2025
Department of Quality Control Material R&D, Shanghai Center for Clinical Laboratory, Shanghai, PR China; Department of Molecular Biology, Shanghai Center for Clinical Laboratory, Shanghai, PR China; Department of Molecular Diagnostic Innovation Technology, Shanghai Academy of Experimental Medicine, Shanghai, PR China. Electronic address:
Background: The current pandemic of 2022 global mpox (formerly known as monkeypox), caused by infection with monkeypox virus (MPXV), has now reached over 120 countries. This constitutes a critical public health issue requiring effective disease management and surveillance. Rapid and reliable diagnosis is conducive to the control of infection, early intervention, and timely treatment.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of California San Diego, La Jolla, CA, USA.
Background: Our lab has developed a CRISPR-based, gene-editing strategy that targets the extreme C-terminus (C-term) of APP (amyloid precursor protein) - a gene with a central and indisputable role in AD. We have reported previously that APP C-terminus CRISPRs effectively attenuate APP β-cleavage and Alzheimer's pathology in vivo. Here, we present new data demonstrating the feasibility and efficacy of a clinically-viable, "all-in-one" therapeutic vector that has all the components needed for APP C-terminus editing (Cas enzyme / gRNAs / regulatory elements) packaged into a single AAV.
View Article and Find Full Text PDFCurr Gene Ther
January 2025
Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 1968917313, Tehran, Iran.
The 5,000 to 8,000 monogenic diseases are inherited disorders leading to mutations in a single gene. These diseases usually appear in childhood and sometimes lead to morbidity or premature death. Although treatments for such diseases exist, gene therapy is considered an effective and targeted method and has been used in clinics for monogenic diseases since 1989.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!