A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Astragaloside IV - mediated endothelial progenitor cell exosomes promote autophagy and inhibit apoptosis in hyperglycemic damaged endothelial cells via miR-21/PTEN axis. | LitMetric

Introduction: As one of the basic components of Astragalus, Astragaloside IV (AS-IV) has a protective effect on endothelial injury caused by diabetes. AS-IV stimulated endothelial progenitor cells (EPCs) to secrete exosomes loaded with miR-21. This study aimed to investigate the effects of AS-IV-mediated EPCs exosomal miR-21 (EPC-exos-miR-21) on high glucose (HG) damaged endothelial cells.

Materials And Methods: After the isolation of EPCs derived from fetal umbilical cord blood, exosomes of EPCs were obtained by differential centrifugation. The morphology of exosomes was observed by electron microscopy. The particle size distribution of exosomes was detected by Nanoparticle Tracking Analysis. Human umbilical vein endothelial cells (HUVECs) were treated with 33 mM glucose to establish an HG injury model. Flow cytometry and TUNEL assay were used to characterize the surface markers of primary EPCs and the apoptosis of HUVECs. The gene and protein expression were detected by qPCR, immunofluorescence, and Western blotting. A dual luciferase assay was used to verify the targeting relationship of miR-21 with PTEN.

Results: HG environment led to time- and dose-dependent inhibition and enhancement of autophagy and apoptosis in HUVECs. AS-IV stimulated EPCs to secrete exosomes loaded with miR-21. Exosomes secreted by EPCs pretreated with AS-IV [EPC-exo(ASIV)] promoted autophagy and inhibited apoptosis in HG-impaired HUVECs. PTEN is a target of miR-21. MiR-21 carried by EPC-exo(ASIV) repressed PTEN expression in HG-impaired HUVECs. In contrast, p-AKT, p-mTOR, p-PI3K, cleaved PARP and PARP levels were upregulated. Compared to the HG group, the expression of autophagy regulatory genes (ATG5, beclin1 and LC3) was enhanced in the EPC-exo(ASIV) group and EPC-exo(ASIV)-miR-21 mimic group. In contrast, apoptosis-positive regulatory genes (Bax, caspase-3 and caspase-9) were attenuated. Further overexpression of PTEN reversed the expression of these genes.

Conclusions: AS-IV-mediated EPC-exos-miR-21 could enhance autophagy and depress apoptosis in HG-damaged endothelial cells via the miR-21/PTEN axis.

Download full-text PDF

Source
http://dx.doi.org/10.5603/FHC.a2022.0030DOI Listing

Publication Analysis

Top Keywords

endothelial cells
12
endothelial progenitor
8
damaged endothelial
8
cells mir-21/pten
8
mir-21/pten axis
8
as-iv stimulated
8
epcs secrete
8
secrete exosomes
8
exosomes loaded
8
loaded mir-21
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!