The emergence of multidrug-resistant microbes and the propagation of cancer cells are global health issues. The unique properties of chitosan and its derivatives make it an important candidate for therapeutic applications. Herein, a new thiadiazole derivative, 4-((5-(butylthio)-1,3,4-thiadiazol-2-yl) amino)-4-oxo butanoic acid (BuTD-COOH) was synthesized and used to modify the chitosan through amide linkages, forming a new thiadiazole chitosan derivative (BuTD-CH). The formation of thiadiazole and the chitosan derivative was confirmed by FT-IR, H/C-NMR, GC-MS, TGA, Elemental analysis, and XPS. The BuTD-CH showed a high antimicrobial effect against human pathogens Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus, and Candida albicans with low MIC values of 25-50 μg ml compared to unmodified chitosan. The in-vitro cytotoxicity of BuTD-CH was evaluated against two cancer cell lines (MCF-7 and HepG2) and one normal cell (HFB4) using the MTT method. The newly synthesized derivatives showed high efficacy against cancerous cells and targeted them at low concentrations (IC was 178.9 ± 9.1 and 147.8 ± 10.5 μg ml for MCF-7 and HepG2, respectively) compared with normal HFB4 cells (IC was 335.7 ± 11.4 μg ml). Thus, low concentrations of newly synthesized BuTD-CH could be safely used as an antimicrobial and pharmacological agent for inhibiting the growth of human pathogenic microbes and hepatocellular and adenocarcinoma therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9742148 | PMC |
http://dx.doi.org/10.1038/s41598-022-25772-4 | DOI Listing |
J Exp Clin Cancer Res
January 2025
Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Background: Most patients with prostate cancer inevitably progress to castration-resistant prostate cancer (CRPC), at which stage chemotherapeutics like docetaxel become the first-line treatment. However, chemotherapy resistance typically develops after an initial period of therapeutic efficacy. Increasing evidence indicates that cancer stem cells confer chemotherapy resistance via exosomes.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China; College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China.
Carboxymethyl chitosan (CMCh) is a natural polysaccharide derivative with biodegradability, rich in active amino and carboxyl groups. It can act as a ligand to coordinate with rare earth ions, transferring absorbed energy to the central ion to sensitize its luminescence. In this paper, CMCh-Tb was prepared as a solid fluorescent probe by mixing CMCh solution with Tb.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemical Engineering, Polytechnique Montreal Montreal QC Canada
Chitosan, a biodegradable and biocompatible natural polymer composed of β-(1-4)-linked -acetyl glucosamine (GlcNAc) and d-glucosamine (GlcN) and derived from crustacean shells, has been widely studied for various biomedical applications, including drug delivery, cartilage repair, wound healing, and tissue engineering, because of its unique physicochemical properties. One of the most promising areas of research is the investigation of the immunomodulatory properties of chitosan, since the biopolymer has been shown to modulate the maturation, activation, cytokine production, and polarization of dendritic cells and macrophages, two key immune cells involved in the initiation and regulation of innate and adaptive immune responses, leading to enhanced immune responses. Several signaling pathways, including the cGAS-STING, STAT-1, and NLRP3 inflammasomes, are involved in chitosan-induced immunomodulation.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
Natural plant-derived polysaccharides exhibit substantial potential for treating ulcerative colitis (UC) owing to their anti-inflammatory and antioxidant properties and favorable safety profiles. However, their practical application faces several challenges, including structural instability in gastric acid, imprecise targeting of inflamed regions, and limited intestinal retention times. To address these limitations, pH-responsive, colon-targeting microspheres (pWGPAC MSs) are developed for delivering phosphorylated wild ginseng polysaccharides (pWGP) to alleviate UC.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
National Nanotechnology Laboratory, National Center for High Technology, Pavas, San José 10109, Costa Rica.
This study focuses on the extraction of phenolic compounds from the fermentation of and . The main goal was to synthesize phenol/chitosan microspheres and PVA films and characterized using FTIR, TGA, DSC, SEM, and mechanical tests to evaluate their physical, chemical, and mechanical properties for antimicrobial packaging applications. Homogeneous chitosan microspheres loaded with lignin-derived phenols were obtained, showing controlled release of antimicrobial compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!