The vitrification of zygotes is important for their use as donors for generating genome-edited mice. We previously reported the successful vitrification of mouse zygotes using carboxylated ε-poly-L-lysine (COOH-PLL). However, this vitrification solution contains fetal calf serum (FCS), which contains unknown factors and presents risks of pathogenic viral and microbial contamination. In this study, we examined whether polyvinyl alcohol (PVA) can be used as an alternative to FCS in vitrification solutions for mouse zygotes. When COOH-PLL was added to the vitrification solutions, zygotes vitrified with solutions containing 0.01% PVA (PV0.01) and those vitrified in a control solution containing FCS (75.6%) developed into blastocysts (78.4%). In addition, there were no significant differences in the ability to develop to term between the control solution (46.6%) and PV0.01 (44.1%) groups. In conclusion, we clearly demonstrated that PVA can replace FCS in our vitrification solution supplemented with COOH-PLL for mouse zygotes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9939285 | PMC |
http://dx.doi.org/10.1262/jrd.2022-121 | DOI Listing |
Cell
January 2025
Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China. Electronic address:
Understanding mammalian preimplantation development, particularly in humans, at the proteomic level remains limited. Here, we applied our comprehensive solution of ultrasensitive proteomic technology to measure the proteomic profiles of oocytes and early embryos and identified nearly 8,000 proteins in humans and over 6,300 proteins in mice. We observed distinct proteomic dynamics before and around zygotic genome activation (ZGA) between the two species.
View Article and Find Full Text PDFJ Exp Med
March 2025
Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
RNA-sensing TLRs are strategically positioned in the endolysosome to detect incoming nonself RNA. RNase T2 plays a critical role in processing long, structured RNA into short oligoribonucleotides that engage TLR7 or TLR8. In addition to its positive regulatory role, RNase T2 also restricts RNA recognition through unknown mechanisms, as patients deficient in RNase T2 suffer from neuroinflammation.
View Article and Find Full Text PDFGenes Cells
January 2025
Advanced Biological Information Research Division, INAMORI Frontier Research Center, Kyushu University, Fukuoka, Japan.
Preimplantation embryonic development is orchestrated by dynamic changes in the proteome and transcriptome, regulated by mechanisms such as maternal-to-zygotic transition. Here, we employed label-free quantitative proteomics to comprehensively analyze proteome dynamics from germinal vesicle oocytes to blastocysts in mouse embryos. We identified 3490 proteins, including 715 consistently detected across all stages, revealing stage-specific changes in proteins associated with translation, protein modification, and mitochondrial metabolism.
View Article and Find Full Text PDFChem Biol Interact
January 2025
Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu, 233000, China. Electronic address:
3-Nitropropionic acid (3-NP) is a naturally occurring mycotoxin produced by various species of fungi and plants. However, the potential impact of 3-NP exposure on reproductive health remains unclear. To address this gap, we conducted an in vitro study to investigate the toxic effects of 3-NP on the developmental processes of mouse embryos.
View Article and Find Full Text PDFProtein Cell
January 2025
Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!