Microorganisms in the environment can be distinguished into dominant and rare microbial species based on their genes. It is difficult to obtain genetic information derived from rare microbial species (rare genes) because of the differences in relative abundance. DNA normalization is an approach that is used to obtain genetic information derived from rare microbial species from an environmental sample. This method involves the addition of adapter sequences for the amplification, denaturation, and reassociation of the DNA fragments and single-stranded DNA (ssDNA)/double-stranded DNA (dsDNA) separation. In this method, the amount of a high-copy-number of DNA fragments and a low-copy-number of DNA fragments can be equalized. Improvements in this technique are expected to provide novel genetic information or genes in rare microbial species. However, few model experimental systems have been reported to validate the DNA normalization techniques. This study is aimed to improve the DNA normalization technique used to obtain genetic information of rare genes from rare microbial species. An experimental study was constructed with two antibiotic resistance genes, whose copy numbers differed up to a million-fold. Both genes were mixed and the mixture of DNA fragments, of high- and low-copy-number, containing these genes was normalized by separating ssDNA/dsDNA fragments using hydroxyapatite. Normalized DNA fragments were introduced into Escherichia coli and DNA normalization was evaluated by counting colonies. Moreover, we improved the method to amplify a low-copy-number of DNA fragments by the addition of adapter sequences to DNA fragments using HiDi DNA polymerase to increase the efficiency of DNA normalization. This normalization method was achieved with a 100,000-fold difference. These methods allowed for quantitative evaluation of the DNA normalization efficiency. The experimental data and methods obtained in this study are expected to improve the DNA normalization efficiency to obtain novel genetic information or genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mimet.2022.106631 | DOI Listing |
Anal Chim Acta
February 2025
Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou, 310003, China. Electronic address:
Background: Amplified imaging of microRNA (miRNA) in cancer cells is essential for understanding of the underlying pathological process. Synthetic catalytic DNA circuits represent pivotal tools for miRNA imaging. However, most existing catalytic DNA circuits can not achieve the reactant recycling operation in cells and in vivo.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China. Electronic address:
Plastic pollution has become a common phenomenon. The process of plastic degradation is accompanied by the release of microplastics and plasticizers. However, the coexistence of microplastics and plasticizers on the transfer of antibiotic resistance genes (ARGs) has not been reported until now.
View Article and Find Full Text PDFBioorg Chem
January 2025
Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China. Electronic address:
This study presents the development and evaluation of triphenylphosphine-modified cyclometalated iridium complexes as selective anticancer agents targeting mitochondria. By leveraging the mitochondrial localization capability of the triphenylphosphine group, these complexes displayed promising cytotoxicity in the micromolar range (3.12-7.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur 416006, MS, India. Electronic address:
Wounds are one of the most critical clinical issues in plastic surgery repair and restoration. Conventional wound dressing materials cannot absorb enough wound exudates and shield the site from microbial infection. Also, despite their healing prowess, bioactive molecules from medicinal plants are less bioavailable at the wound sites.
View Article and Find Full Text PDFBiochim Biophys Acta Rev Cancer
January 2025
Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India; Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India. Electronic address:
Chemoresistance, a significant challenge in effective cancer treatment needs clear elucidation of the underlying molecular mechanism for the development of novel therapeutic strategies. Alterations in transporter pumps, oncogenes, tumour suppressor genes, mitochondrial function, DNA repair processes, autophagy, epithelial-mesenchymal transition (EMT), cancer stemness, epigenetic modifications, and exosome secretion lead to chemoresistance. Despite notable advancements in targeted cancer therapies employing both small molecules and macromolecules success rates remain suboptimal due to adverse effects like drug efflux, target mutation, increased mortality of normal cells, defective apoptosis, etc.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!