Fe-N co-doped coral-like hollow carbon shell (Fe-N-CS) was synthesized via a simply impregnation-pyrolysis method. The Fe-N-CS showed an excellent ability for activating peroxymonosulfate (PMS), which could degrade about 93.74% tetracycline (20 mg/L) in 12 min. The Fe-N-CS/PMS system exhibited a good anti-interference capacity of various pH, inorganic anions, HA and different water qualities. More importantly, the Fe nanoparticles were anchored uniformly in the carbon layer, effectively limiting the metal leaching. The quenching tests and electron spin resonance (ESR) manifested that non-radical singlet oxygen (O) was the main reactive oxygen species (ROS) for TC degradation. The mechanism study showed that Fe nanoparticles, defect and graphite N played a key role in activating PMS to produce ROS. Moreover, three probable degradation pathways were proposed by using LC-MS measurements. Generally, this work had a new insight for the synthesis of heterogeneous Fe-N-C catalysts in the advanced oxidation process based on PMS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jes.2022.03.018 | DOI Listing |
ACS Sens
December 2024
Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China.
Fe single-atom and Fe cluster-coupled N, S co-doped carbon nanomaterials (Fe-FeO-NSC) were prepared through a two-step high-temperature pyrolysis process using Gelidium corneum enriched with C, Fe, O, N, and S as precursors. The analysis by aberration-corrected scanning transmission electron microscopy and X-ray absorption spectroscopy revealed the presence of single-atom Fe in Fe-N coordination structures, along with small clusters as Fe-O-coordinated FeO. Single-atom Fe in the form of Fe/Fe provides more electrocatalytic active sites, which synergistically accelerates the charge migration process in the assembly of Fe-FeO-NSC with FeO clusters.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China.
A lignin-based Fe/N co-doped carbonaceous catalyst was synthesized via freeze-drying followed by pyrolysis to activate peroxymonosulfate (PMS) for efficient degradation of bisphenol A (BPA). The Fe/N co-doped biochar exhibited a high specific surface area (364.84 m/g), hierarchical porous structures, and abundant oxygen-containing functional groups (hydroxyl and carboxyl groups), which enhancing the dispersion of FeO nanoparticle and exposure of catalytic site.
View Article and Find Full Text PDFNanomaterials (Basel)
October 2024
State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
In this paper, we prepared a new type of iron and nitrogen co-doped porous carbon material (WSC-Fe/N) using a carbonization-activation process with wheat straw as a precursor and FeCl and NHCl as co-doping agents and analyzed the electrochemical properties of the resulting electrode material. Through precise control of the doping elements and carbonization temperature (900 °C), the resulting WSC-Fe/N-900 material exhibits abundant micropores, uniform mesopores, a significant specific surface area (2576.6 m g), an optimal level of iron doping (1.
View Article and Find Full Text PDFChemistry
January 2025
School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.
Atomically dispersed iron and nitrogen co-doped carbon materials (Fe-N-C) represent promising non-precious metal catalysts for the oxygen reduction reaction (ORR), offering potential alternatives to noble metal-based benchmarks. In our study, we investigated the influence of phosphorus doping on the catalytic activity of Fe-N-C. The experimental research demonstrate that the doping of phosphorus significantly enhances the ORR activity.
View Article and Find Full Text PDFInt J Mol Sci
September 2024
School of Resources and Environment, Anqing Normal University, Anqing 246011, China.
In this study, Fe, N co-doped biochar (Fe@N co-doped BC) was synthesized by the carbonization-pyrolysis method and used as a carbocatalyst to activate peroxymonosulfate (PMS) for sulfamethoxazole (SMX) removal. In the Fe@N co-doped BC/PMS system, the degradation efficiency of SMX (10.0 mg·L) was 90.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!