Background: Taxus is a rare gymnosperm plant that is the sole producer of the anticancer drug paclitaxel. The growth and development of Taxus is affected by environmental factors such as light. However, little is known about how light conditions affect growth and metabolic processes, especially paclitaxel biosynthesis.

Results: In this study, we applied three different light conditions to Taxus chinensis young saplings and investigated the physiological response and gene expression. Our observations showed that exposure to high light led to oxidative stress, caused photoinhibition, and damaged the photosynthetic systems in T. chinensis. The paclitaxel content in T. chinensis leaves was significantly decreased after the light intensity increased. Transcriptomic analysis revealed that numerous genes involved in paclitaxel biosynthesis and phenylpropanoid metabolic pathways were downregulated under high light. We also analyzed the expression of JA signaling genes, bHLH, MYB, AP2/ERF transcription factors, and the CYP450 families that are potentially related to paclitaxel biosynthesis. We found that several CYP450s, MYB and AP2/ERF genes were induced by high light. These genes may play an important role in tolerance to excessive light or heat stress in T. chinensis.

Conclusions: Our study elucidates the molecular mechanism of the effects of light conditions on the growth and development of T. chinensis and paclitaxel biosynthesis, thus facilitating the artificial regeneration of Taxus and enhancing paclitaxel production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9743728PMC
http://dx.doi.org/10.1186/s12870-022-03958-2DOI Listing

Publication Analysis

Top Keywords

paclitaxel biosynthesis
16
light conditions
12
high light
12
light
10
paclitaxel
8
growth development
8
chinensis paclitaxel
8
myb ap2/erf
8
transcriptome analysis
4
analysis insights
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!