Background: High endothelial venules (HEV) and tertiary lymphoid structures (TLS) are associated with clinical outcomes of patients with colorectal cancer (CRC). However, because HEV are components of TLS, there have been few studies of the role of the HEV proportion in TLS (HEV/TLS). This study investigated the role of the HEV/TLS and its relationship with the tumor immune microenvironment in CRC.
Methods: A retrospective analysis of 203 cases of tissue pathologically diagnosed as CRC after general surgery was performed at the First Affiliated Hospital of Jinan University from January 2014 to July 2017. Paraffin sections were obtained from the paracancerous intestinal mucosal tissues. The area of HEV and TLS and immune cells were detected by immunohistochemistry. We further divided the positive HEV expression group into the high HEV/TLS group and the low HEV/TLS group by the average area of HEV/TLS. After grouping, the data were also analyzed using the chi-square test, Kaplan-Meier method, and univariate and multivariate Cox proportional risk regression analyses. A correlation analysis of the HEV/TLS and immune cells as well as angiogenesis was performed.
Results: Patients with a high HEV/TLS in CRC tissue were associated with longer OS, DFS and lower TNM stage. Meanwhile, CRC tissue with a high HEV/TLS showed a greater ability to recruit the CD3+ T cells, CD8+ T cells and M1 macrophages and correlated with less angiogenesis. Conclusively, high HEV/TLS links to the favorable prognosis of CRC patients and correlated with anti-tumor immune microenvironment, which can be a potential biomarker for prognosis of CRC patients.
Conclusion: A high HEV/TLS is associated with a favorable prognosis for CRC and is correlated with the anti-tumor immune microenvironment. Therefore, it is a potential biomarker of the CRC prognosis.KEY MESSAGESHigh HEV/TLS is associated with a favorable prognosis for CRC.High HEV/TLS correlated with the anti-tumor immune microenvironment of CRC and can serve as a novel prognostic biomarker.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9754014 | PMC |
http://dx.doi.org/10.1080/07853890.2022.2153911 | DOI Listing |
Anticancer Agents Med Chem
January 2025
Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China.
Dysregulated lipid metabolism within the tumor microenvironment (TME) is a critical hallmark of cancer progression, with lipids serving as a major energy source for tumor cells. Beyond their role in cell membrane synthesis, lipids also provide essential substrates for biomolecule production and activate signaling pathways that regulate various cellular processes. Aberrant lipid metabolism impacts not only function but also alters the behavior of immune and stromal cells within the TME.
View Article and Find Full Text PDFCurr Cancer Drug Targets
January 2025
Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science and Technology, Kolkata, 700114, India.
Immune checkpoint blockade (ICB) has fundamentally transformed cancer treat-ment by unlocking the potency of CD8+ T cells by targeting the suppression of the CTLA-4 and PD-1/PD-L1 pathways. Nevertheless, ICBs are associated with the risk of severe side effects and resistance in certain patients, driving the search for novel and safer immune check-point modulators. Monoamine Oxidase A (MAO-A) plays an unexpected role in the field of cancer.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Department of Ultrasound Medicine, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
Bacteria-based tumor therapy, which releases therapeutic payloads or remodels the tumor's immune-suppressive microenvironment and directly kills tumor cells or initiates an anti-tumor immune response, is recently recognized as a promising strategy. Bacteria could be endowed with the capacities of tumor targeting, tumor cell killing, and anti-tumor immune activating by established gene engineering. Furthermore, the integration of synthetic biology and nanomedicine into these engineered bacteria could further enhance their efficacy and controllability.
View Article and Find Full Text PDFJ Drug Target
January 2025
Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
Colorectal cancer (CRC) continues to be a major worldwide health issue, with elevated death rates linked to late stages of the illness. Immunotherapy has made significant progress in developing effective techniques to improve the immune system's capacity to identify and eradicate cancerous cells. This study examines the most recent advancements in CAR-T cell treatment and exosome-based immunotherapy for CRC.
View Article and Find Full Text PDFExpert Rev Anticancer Ther
January 2025
Division of Pancreatic Surgery, Pancreas Translational & Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!