Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) is a major signal transducer of the endoplasmic reticulum stress response (ERSR) pathway. Outcomes of PERK activation range from abrogating ER stress to induction of cell death, dependent on its level, duration, and cellular context. Current data demonstrate that after mouse spinal cord injury (SCI), acute inhibition of PERK (0-72 h) with the small molecule inhibitor GSK2656157 reduced ERSR while improving white matter sparing and hindlimb locomotion recovery. GSK2656157-treated mice showed increased numbers of oligodendrocytes at the injury epicenter. Moreover, GSK2656157 protected cultured primary mouse oligodendrocyte precursor cells from ER stress-induced cytotoxicity. These findings suggest that in the context of SCI, excessive acute activation of PERK contributes to functionally relevant white matter damage. Pharmacological inhibition of PERK is a potential strategy to protect central nervous system (CNS) white matter following acute injuries, including SCI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10162120 | PMC |
http://dx.doi.org/10.1089/neu.2022.0177 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!