Competition at the Bio-nano Interface: A Protein, a Polysaccharide, and a Fatty Acid Adsorb onto Magnetic Nanoparticles.

ACS Appl Bio Mater

Bioseparation Engineering Group, Department of Energy and Process Engineering, TUM School of Engineering and Design, Technical University of Munich, Garching 85748, Germany.

Published: January 2023

Magnetic nanoparticles are an attractive bioseparation tool due to their magnetic susceptibility and high adsorption capacity for different types of molecules. A major challenge for separation is to generate selectivity for a target molecule, or for a group of molecules in complex environments such as cell lysates. It is crucial to understand the factors that determine the targets' adsorption behavior in mixtures for triggering intended interactions and selectivity. Here we use a model system containing three molecules, each of them a common representative of the more abundant types of macromolecules in living systems: sodium oleate (SO), a fatty acid; bovine serum albumin (BSA), a protein; and dextran, a polysaccharide. Our results show that (a) the BSA adsorption capacity on the iron oxide material depends markedly on the pH, with the maximum capacity at the pI of the protein (0.39 g g ); (b) sodium oleate, a strongly negatively charged molecule, an organic anion, renders a maximum adsorption capacity of 0.40 g g, even at pHs at which oleate as well as the nanoparticle surface are negatively charged; (c) the adsorbed masses of dextran, a neutral sugar, are lower than for the other two molecules, between 0.09 and 0.13 g g, regardless of the system's pH. We observe an unexpected behavior in mixtures: SO completely prevents the adsorption of BSA, and dextran decreases the adsorption of the other competitors, SO and BSA, while adsorbing at the same capacities, unaffected by either the presence of the other two molecules or the pH. BSA does not decrease the oleate adsorption capacity. We demonstrate the essential role of pH in the adsorption of BSA (a protein) and SO (a fatty acid), as well as its impact in the structural organization of the oleate molecules in water. Moreover, we present exciting data on the adsorption of the molecules in competition, revealing the need to focus on interaction studies in more complex environments. This study attempts to open the scope of the current research of bio-nano interactions to not only proteins but also to mixtures, and generally to molecules with other physicochemical characteristics. Furthermore, we contribute to the understanding of multicomponent systems with the vision set in enhancing biomass exploitation and biofractionation processes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.2c00812DOI Listing

Publication Analysis

Top Keywords

adsorption capacity
16
fatty acid
12
adsorption
9
magnetic nanoparticles
8
molecules
8
complex environments
8
behavior mixtures
8
sodium oleate
8
bsa protein
8
negatively charged
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!