A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Investigation of the Use of Hollow Elastic Biomodels Produced by Additive Manufacturing for Clip Choice and Surgical Simulation in Microsurgery for Intracranial Aneurysms. | LitMetric

Background: Intracranial aneurysms (IAs) are dilatations of the cerebral arteries, whose treatment is commonly based on the implant of a metallic clip on the aneurysm neck. Despite the dissection and understanding of the surgical anatomy of the IA when often only parts of it are visible, the choice of the ideal clip to be used is one of the surgical difficulties. Although current imaging tests guarantee IA visualization, currently there is no planning method that allows for a real three-dimensional (3D) visualization for optimal choice of clip prior to surgery. The aim of this study is to evaluate whether IA biomodels generated by additive manufacturing methods are useful for surgical clip selection in microsurgeries for IA.

Methods: Three-dimensional (3D) IA biomodels of 10 patients with IA were evaluated using computerized tomography, surgical microscope, and 3D printer. The research was divided into 4 phases as follows: development of the 3D biomodels, evaluation of the biomodel dimensional characteristics, surgical planning evaluation with the biomodel and its clipping effectiveness, and evaluation of the actual surgical simulation process within the models.

Results: Ten 3D biomodels were obtained, made of a malleable and hollow part, formed by the IA and related arteries, and another rigid part, mimicking the skull and other arteries of the skull base. Based on these 3D models, 10 clips were chosen during the surgical planning, and all exactly matched the clip characteristics used during the actual surgeries. The surgical simulation with the biomodels performed by 2 neurosurgeons still in training obtained 100% accuracy in the identification of the clips that were eventually used during the actual surgeries.

Conclusions: 3D biomodels generated by additive manufacturing methods were effective for surgical clip selection in microsurgeries for IA, reducing surgical time, increasing cerebral angioarchitecture understanding, and providing more safety in this type of surgery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wneu.2022.12.011DOI Listing

Publication Analysis

Top Keywords

additive manufacturing
12
surgical simulation
12
surgical
11
intracranial aneurysms
8
biomodels generated
8
generated additive
8
manufacturing methods
8
surgical clip
8
clip selection
8
selection microsurgeries
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!